
User Device Interaction Prediction via Relational Gated Graph
Attention Network and Intent-aware Encoder

Jingyu Xiao
∗

Tsinghua Shenzhen International

Graduate School

Peng Cheng Laboratory

Shenzhen, China

jy-xiao21@mails.tsinghua.edu.cn

Qingsong Zou
∗

Tsinghua Shenzhen International

Graduate School

Peng Cheng Laboratory

Shenzhen, China

zouqs21@mails.tsinghua.edu.cn

Qing Li
†

Peng Cheng Laboratory

Shenzhen, China

liq@pcl.ac.cn

Dan Zhao

Peng Cheng Laboratory

Shenzhen, China

zhaod01@pcl.ac.cn

Kang Li

Jilin University

Changchun, China

likang9920@mails.jlu.edu.cn

Wenxin Tang

Jilin University

Changchun, China

tangwx9919@mails.jlu.edu.cn

Runjie Zhou

Shandong University

Jinan, China

runjiezhou@mail.sdu.edu.cn

Yong Jiang

Tsinghua Shenzhen International

Graduate School

Peng Cheng Laboratory

Shenzhen, China

jiangy@sz.tsinghua.edu.cn

ABSTRACT
With the booming of smart home market, intelligent Internet of

Things (IoT) devices have been increasingly more involved in home

life. To improve the user experience of smart home, some prior

works have explored how to use time series analysis technology

for predicting the interaction between users and devices. However,

existing solutions have inferior User Device Interaction (UDI) pre-

diction accuracy, as they fail to consider the complex heterogeneous

device transitions, multiple intents of a user and multi-level period-

icity of user behaviors. In this paper, we present DeepUDI, a novel

approach for accurate UDI prediction. First, we propose Relational

Gated Graph Attention Network (RGGAT) to learn embedding

of device and device control while considering complex hetero-

geneous temporal transitions. Second, we propose Intent-aware

Encoder (IAE) to encode multiple intents of users via capsule net-

works. Third, we design a Historical Attention Mechanism (HAM)

to capture the multi-level periodicity by aggregating the current

sequence and the historical sequence representations through the

attention mechanism. Comprehensive experiments on four real-

world datasets show that DeepUDI consistently outperforms state-

of-the-art baselines and also offers highly interpretable results.

KEYWORDS
User Device Interaction;Graph Neural Networks;Capsule Networks

∗
The first two authors have equal contribution.

†
Qing Li is the corresponding author.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

ACM Reference Format:
Jingyu Xiao, Qingsong Zou, Qing Li, Dan Zhao, Kang Li, Wenxin Tang,

Runjie Zhou, and Yong Jiang. 2023. User Device Interaction Prediction

via Relational Gated Graph Attention Network and Intent-aware Encoder.

In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June
2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
With fast-evolving IoT solutions, the number of smart devices in

homes have soared, expected to reach 5 billion by 2025 [13]. The

emergence of cloud platforms also allows IoT sensors and actua-

tors to better assist users in various home living activities. In this

process, users’ use of devices, i.e., device controls, can reflect their

behavioral habits and intents. Exploiting the relationship between

user behavior habits, intents and their use of devices bring about

opportunities from various perspectives. For service providers, such

as vendors, knowing users’ living habits through their device usage

histories can offer insights for improving user experience. From

the perspective of device intelligence, prediction of user behavior

can help intelligent platforms recommend actions that users may

like to perform, or recommend automation rules that users may be

interested in, such as lock the back door when the front door is closed
outside. From the perspective of user behavior analysis, accurate

user behavior prediction can be used for abnormal user behavior

identification, elderly/disabled care.

Motivated by these, some prior studies have analyzed user behav-

iors at home and adopted user behavior prediction technologies for

different purposes. [11, 20] infer the users’ behavioral intents from

their sequential operations on the device, and generate alternative

automation rules and next behavior recommendations. [1, 15, 27]

analyze the behavior patterns of users at home, and observe the sta-

tus of connected smart home entities (sensors and devices) through

different user activities and usage patterns for the benefit of elderly

care and abnormal behavior recognition. However, there are three

main challenges in the prediction of User Device Interaction (UDI)

that have not been properly addressed in smart home scenarios.

First, complex heterogeneous transitions between devices user

accessed makes it difficult for models to learn behavior represen-

tations. On the one hand, there are transitions not only between

consecutive devices, but also in broader contexts (i.e., other devices

in the behavior sequence). For example, as shown in Figure 1, the

user interacts with the water valve at time 𝑡1 and 𝑡6. All devices

between time 𝑡1 and 𝑡6, rather than only the devices immediately

next to 𝑡1 and 𝑡6, have transitions with the water valve. On the

other hand, the transitions among different devices are heteroge-

neous, that is, caused by different device controls. For example, the

transition from the oven to the microwave can be caused by the

device control “turn on the microwave”, or caused by the device

control “turning off the microwave” (e.g., the user’s reaction upon

receiving a finish notification from the microwave).

Second, there are often multiple intents in a UDI sequence. Re-

lying purely on a user’s sequential behavior without considering

intents may lead to wrong predictions. For example, a user may

cook while doing laundry because of the long wash cycle of the

washing machine, as shown in Figure 1. There are two intents, i.e.,
laundry and cooking, in the behavior sequence. Without consid-

ering user’s multiple intents, after observing the behavior from

𝑡1 to 𝑡4, the next behavior is likely to be predicted as “start dish

washer”, because recent behaviors “switch on oven” and “switch

on microwave” are both cooking-related. However, in fact, before

the meal is ready, the washing machine cycle has finished, and the

user’s next behavior should be “turn off washing machine”.2 Challenge

laundry

24:00
Tuesday

24:00
Friday

……

sleep

𝑡" 𝑡# 𝑡$

turn on switch on turn offopen

𝑡% 𝑡&

water
valve

washing
machine

dryer

cooking

ove
n

microwave

dish
washer

switch on close

𝑡' 𝑡(

start

curtain:
close

light:
turn off

22:00
Wednesday

22:00
Thursday

2:00
Saturday

2:00
Saturday

𝑡!

cooking

dish
washer

oven

switch on

Figure 1: An example of user sequential behavior with two
intents: laundry (watervalve/washing machine/dryer) and
cooking (oven/microwave/dish washing machine).

Third, the multi-level periodicity in user behavior makes it diffi-

cult for models to predict the interactions. For example, the bedtime

of a user, which determines when sleep-related interactions (“close

curtain”/“turn off light”) occur, is not fixed. As shown in Figure 2,

a user may leave work on time on Wednesday and Thursday, and

go to bed early but may work overtime once every 3 days, e.g., on

Tuesday and Friday, and therefore go to bed later. Every Saturday

night, the user may want to stay up late for games, and sleep even

later. In this example, the user’s behavior is of different periodicity,

that is, working overtime every three days, and playing games till

late at night every Saturday, causing fluctuations in sleeping time

over the week.

2 Challenge

laundry

24:00
Tuesday

24:00
Friday

……

sleep

𝑡" 𝑡# 𝑡$

turn on switch on turn offopen

𝑡% 𝑡&

water
valve

washing
machine

dryer

cooking

ove
n

microwave

dish
washer

switch on close

𝑡' 𝑡(

start

curtain:
close

light:
turn off

22:00
Wednesday

22:00
Thursday

2:00
Saturday

2:00
Saturday

𝑡!

cooking

dish
washer

oven

switch on

Figure 2: The multi-level periodicity in the user behavior.

To address the above challenges, in this paper, we propose Deep-

UDI, a novel approach for accurate UDI prediction. The design of

DeepUDI mainly includes the following three ideas. First, DeepUDI

designs a multi-modal embedding layer to encode device control

along with device and time to fully account for contextual informa-

tion. Specifically, we propose a Relational Gated Graph Attention

Network (RGGAT) to learn the representation of devices and device

controls to mine the complex heterogeneous transitions among

different devices. To capture periodic patterns of time, we leverage

Time2Vec [8] to learn the temporal representations. Second, we

propose an Intent-aware Encoder (IAE) to encode multiple intents

of users from the UDI sequence. DeepUDI views behaviors of dif-

ferent intents as different primary capsules, and learns multi-intent

representations of users through the capsule networks [19], then an

inter-intent aggregation mechanism is applied to learn weights of

different intents for aggregating representations. Third, we design

a Historical Attention Mechanism (HAM) to capture the multi-level

periodicity by aggregating the current sequence and the historical

sequence representations through the attention mechanism. Our

main contributions are summarized as follows:

• We propose RGGAT, an architecture based on graph atten-

tion networks, which converts user behavior sequences into

relational sequence graphs to learn complex heterogeneous

transitions among devices.

• We propose IAE, an encoder based on capsule networks,

which view behaviors as primary capsules and learn multi-

intent representations of users by dynamic routing and inter-

intent aggregation.

• We propose HAM to capture multi-level periodicity of user

behaviors by applying attention mechanism between current

and historical user behavior sequences.

2 RELATEDWORKS
Given a behavior sequence, predicting the next behavior of the user

is called the sequential prediction problem (e.g., recommendation

[12] and human mobility prediction [4]). Traditional methods such

as Markov chains (MC) [5], Matrix Factorization (MF) [14] and

FPMC [18] are applied in sequential prediction in earlier years. [5]

builds a transition matrix between states to make predictions. [14]

factorizes the users-locations matrix to generate user general pref-

erences to complete human next location prediction. [18] combines

first-order Markov Chains and Matrix Factorization to model both

sequential behaviors and general interests of users for the sequen-

tial recommendation. With the development of deep learning, deep

neural networks such as Recurrent Neural Networks (RNN), Con-

volutional Neural Networks (CNN), Graph Neural Networks (GNN)

and Transformers [23] have been adopted in sequential user behav-

ior prediction. CA-RNN [12] and SIAR [17] incorporate contextual

information into the RNN for the sequential recommendation. Caser

[21] employs CNN in both time-axis and feature-axis to capture

temporal dynamics in a sequential recommendation. [25, 26] apply

gated GNN to capture complex transition patterns among nodes

for achieving the session-based recommendation. SASRec [7] uti-

lizes unidirectional transformers to capture sequential patterns in

sequences while considering the importance of correlations be-

tween behaviors. SmartSense [6] utilizes a two-stage encoder for

IoT action recommendations. However, these methods either do

not consider the complex transitions between behaviors, or do not

consider the multi-intent and multi-periodicity of user behaviors.

3 DEEPUDI OVERVIEW
Let D denote a set of devices, C denote a set of device controls, I
denote a set of intents and S denote a set of behavior sequences.

Definition 1. (Behavior) The behavior 𝑏 = (𝑡, 𝑑, 𝑐, 𝑖), is a 4-
tuple consisting of time 𝑡 , device 𝑑 ∈ D, device control 𝑐 ∈ C, and
intent 𝑖 ∈ I. For example, the behavior b = (2022-10-15 11:30, oven,
oven:switch on, cooking) describes the behavior “turn on the oven” at
11:30 on 2022-10-15, with the intent of cooking.

Definition 2. (Behavior Sequence) The behavior sequence 𝑠 =

[𝑏1, 𝑏2, · · · , 𝑏𝑛] ∈ S is a list of behaviors. 𝑏 is ordered by timestamps,
and 𝑛 is the length of 𝑠 .

We describe the User Device Interaction (UDI) prediction prob-

lem definition as follows.

Problem 1. (UDI Prediction) Given a previous sequence 𝑠 ∈ S,
predict the next behavior 𝑏𝑛+1 in the behavior sequence.

In this paper, we divide the behavior into fixed time intervals.

Since the device control contains both device and intent information

(e.g., “oven:switch on” indicates that the device is oven and the

user’s intent is cooking), the problem is simplified to predict the

next device control 𝑐𝑛+1 in the next time interval.

To address the three challenges mentioned above, we propose

DeepUDI, depicted in Figure 3. DeepUDI mainly consists of a multi-

modal embedding layer (§4), an intent-aware encoder layer (§5)

and a historical attention layer (§6).

First, the behavior sequence data is fed into a multi-modal
embedding layer to extract behavior representations, where de-
vice and device control embedding are learned by Relational Gated

GraphAttentionNetwork (RGGAT) and time embedding are learned

by Time2Vec [8]. Then, the behavior representations are input to

the intent-aware encoder layer to extract multi-intent repre-

sentations of users for the sequence representations. After getting

sequence representations, a historical attention layer is applied
to extract history sequence representations, which are connected

with the current sequence representation for the final prediction.

4 MULTI-MODAL EMBEDDING LAYER
We design a multi-modal embedding layer to encode device control

with device and time to fully account for contextual information.

4.1 Time Embedding
Due to the continuity of timestamps, it is impractical to learn tem-

poral representations directly from timestamps. We express time

as hour of the day and day of the week, as they are shown to affect

users’ device controls [6]. We leverage Time2Vec [8] to learn time

embedding because it can capture both periodic and non-periodic

patterns and is invariant to time rescaling. For a given scalar notion

of time 𝜏 , the embedding t2v(𝜏) of size 𝐿 can be defined as follows:

t2v(𝜏) [𝑖] =
{
𝜔𝑖𝜏 + 𝜑𝑖 , if 𝑖 = 0

F (𝜔𝑖𝜏 + 𝜑𝑖) , if 1 ≤ 𝑖 ≤ 𝐿 − 1

(1)

where t2v(𝜏) [𝑖] denotes the 𝑖-th element of t2v(𝜏), F is a periodic

activation function, i.e., a sine function, 𝜔𝑖 and 𝜑𝑖 are learnable

parameters. For instance, a sine function 𝑠𝑖𝑛(𝜔𝜏 + 𝜙) with 𝜔 =
2𝜋

7

repeats every 7 days (assuming 𝜏 indicates days) and can potentially

model weekly patterns. Let e𝑑𝑤 , eℎ ∈ R𝐿 denote the embeddings

of day of the week and hour of the day which are obtained by

Time2Vec, respectively.

4.2 Device and Device Control Embeddings
[25] proves that Gated Graph Neural Networks (GGNN) can mine

the transitions between different nodes in a sequence graph. How-

ever, GGNN cannot be directly applied to our scenario because

the transitions between different devices are heterogeneous (differ-

ent device controls). Inspired by [2], which incorporates relational

information into Graph Attention Networks (GAT), we propose

Relational Gated Graph Attention Network (RGGAT) to learn
device and device control embeddings from the relational sequence

graphs constructed by behavior sequences.

4.2.1 Relational Sequence Graph (RS-Graph) Construction. A be-

havior sequence 𝑠 can be modeled as a relational directed graph

𝐺𝑠 (𝑉𝑠 , 𝐸𝑠) with 𝑅 = |ℛ| relation types and 𝑁 nodes. Each node

in the graph represents a device, each edge (𝑑𝑛−1, 𝑑𝑛) ∈ 𝐸𝑠 indi-
cates that the user accesses device 𝑑𝑛 after accessing device 𝑑𝑛−1
and each device control represents a relation 𝑟 ∈ 𝐶 . Specifically,
let MIn,MOut ∈ R𝑁×𝑁

denote weighted connections of outgo-

ing and incoming edges in the RS-Graph, respectively. Consider-

ing a behavior sequence 𝑠=[(𝑡1, 𝑑1,washing machine:start, laun-

dry), (𝑡2, 𝑑2, microwave:switch on, cooking), (𝑡3, 𝑑1, washing ma-

chine:notification, laundry), (𝑡4, 𝑑3, dryer:switch on, laundry), (𝑡5,

𝑑2, microwave:notification, cooking), (𝑡6, 𝑑4, dish washer: start,

cooking)], the RS-Graph is shown in Figure 4(a) and the relevant

incoming and outgoing matrices are shown in the Figure 4(b). Since

several devices may appear in the behavior sequence repeatedly,

we assign each edge a normalized weight calculated as the number

of occurrences of the edge divided by the out-degree of the starting

node of that edge.

4.2.2 Device Embedding Update on RS-Graph. To learn representa-

tions for devices, we first encode each device into a low-dimensional

latent space. Let 𝑒𝑑 ∈ R𝐿 denote a 𝐿-dimensional embedding vector

of device 𝑑 . Let N (𝑟)
𝑖

denote the set of neighbor indices of node

𝑖 under relation 𝑟 ∈ ℛ. For nodes 𝑗 ∈ N (𝑟)
𝑖

, to evaluate how im-

portant node 𝑗 ’s features are to node 𝑖 , we compute the attention

coefficient 𝐸𝑖, 𝑗,𝑟 as:

RGGAT

𝑣! 𝑣" 𝑣#

𝑣$

Device
Embedding

Time2Vec
Device Control

Embedding
Hour

Embedding
Day

Embedding

Multi-Modal Embedding Layer

M
ulti-M

odal
Em

bedding
Layer

Historical Sequences

Current Sequence

Intent-aw
are Encoder

Layer

H
istorical

A
ttention
Layer

C
onnect Layer

Prediction Layer

Self-attention Layer

Capsule Network Capsule Network

Inter-intent Aggregation

Intent-aware Encoder Layer

Sequence
Embedding C Prediction

Vector 𝑝
Output

…
…

𝒊𝒏𝒕𝒆𝒏𝒕𝑨 𝒊𝒏𝒕𝒆𝒏𝒕𝑩 𝒊𝒏𝒕𝒆𝒏𝒕𝑨 𝒊𝒏𝒕𝒆𝒏𝒕𝑨 𝒊𝒏𝒕𝒆𝒏𝒕𝑩

Figure 3: Overview of DeepUDI.2 Challenge

d!

dish washer:
start

washing
machine:
turn on

microwave:
switch on

dryer:
switch on

microwave:
notification

washing machine:
notification d"

d#

d$

1/2 1/2 0 0

1/2 0 1/2 0

1 0 0 0

0 1 0 0

1

2

3

4

1 2 3 4

1/2 1/2 0 0

1/2 0 0 1/2

0 1 0 0

0 0 0 0

1

2

3

4

1 2 3 4

Outgoing Matrix

Incoming Matrix

𝑀!"

M#$%

1/2 1/2 0 0

1/2 0 0 1/2

0 1 0 0

0 0 0 0

1

2

3

4

1 2 3 4
Outgoing Matrix

𝑀&'(

(a) An example of relational sequence graph.

2 Challenge

d!

dish washer:
start

washing
machine:

start

microwave:
switch on

dryer:
switch on

microwave:
notification

washing machine:
notification d"

d#

d$

1/2 1/2 0 0

1/2 0 1/2 0

1 0 0 0

0 1 0 0

1

2

3

4

1 2 3 4

1/2 1/2 0 0

1/2 0 0 1/2

0 1 0 0

0 0 0 0

1

2

3

4

1 2 3 4

Outgoing Matrix

Incoming Matrix

𝑀!"

M#$%

1/2 1/2 0 0

1/2 0 0 1/2

0 1 0 0

0 0 0 0

1

2

3

4

1 2 3 4
Outgoing Matrix

𝑀&'(

(b) Incoming matrixMIn
and the outgoing matrixMOut

.

Figure 4: Construction of RSGraph.

𝐸𝑖, 𝑗,𝑟 = Attention

(
We𝑑𝑖 ,We𝑑 𝑗

)
, (2)

whereW is the shared weight matrix, andAttention is the attention

mechanism [24]. The normalized attention coefficients across all

neighbors of node 𝑖 under relation 𝑟 are:

𝛼𝑖, 𝑗,𝑟 = softmax

𝑗

(
𝐸𝑖, 𝑗,𝑟

)
=

exp

(
𝐸𝑖, 𝑗,𝑟

)∑
𝑘∈N (𝑟)

𝑖

exp

(
𝐸𝑖,𝑘,𝑟

) , (3)

∀𝑖, 𝑟 :
∑︁

𝑗∈N (𝑟)
𝑖

𝛼𝑖, 𝑗,𝑟 = 1. (4)

Given the attention matrix A𝑟 under relation 𝑟 , where the value
in row 𝑖 and column 𝑗 of A𝑟 represents 𝛼𝑖, 𝑗,𝑟 , and the connection

matrices MIn
and MOut

, for the 𝑛-th device in the RS-Graph, the

information propagation process can be formalized as:

a𝑛,𝑟 = Concat

(
M𝐼𝑛
𝑛 ⊙ A𝑟,𝑛

[
e𝑑1 , . . . , e𝑑𝑁

]
,

M𝑂𝑢𝑡
𝑛 ⊙ A𝑟,𝑛

[
e𝑑1 , . . . , e𝑑𝑁

])
,

(5)

where M𝐼𝑛
𝑛 ,M

𝑂𝑢𝑡
𝑛 ∈ R1×𝑁 are 𝑛-th row of M𝐼𝑛

and M𝑂𝑢𝑡
corre-

sponding to node 𝑑𝑛 , respectively, and A𝑟,𝑛 ∈ R1×𝑁 is the 𝑛-th

row of A𝑟 . ⊙ denotes element-wise multiplication. a𝑛,𝑟 extracts

the transition context information between different devices with

different relations.

Then a𝑛,𝑟 is input to the Gate Recurrent Unit (GRU), which

consists of an update gate z𝑛 and a reset gate r𝑛 . The reset gate z𝑛
determines how new input information is combined with previous

memories

z𝑛,𝑟 = sigmoid

(
W𝑧a𝑛,𝑟 + U𝑧e𝑛−1

)
. (6)

The update gate r𝑛 determines what historical information to keep

r𝑛,𝑟 = sigmoid

(
W𝑟 a𝑛,𝑟 + U𝑟 e𝑛−1

)
. (7)

Then, we constructs the candidate state ẽ𝑛,𝑟 by the previous state

𝑒𝑛−1, the current state a𝑛,𝑟 , and the reset gate r𝑛,𝑟 as

ẽ𝑛,𝑟 = tanh

(
Wℎa𝑛,𝑟 + U𝑜

(
r𝑛,𝑟 ⊙ e𝑛−1

))
. (8)

The final state is then the combination of the previous hidden state

and the candidate state, under the control of the update gate. After

updating all nodes in RS-Grpahs until convergence, we can obtain

the device embedding 𝑒𝑛,𝑟 under relation 𝑟 as

e𝑛,𝑟 =
(
1 − z𝑛,𝑟

)
⊙ e𝑛−1 + z𝑛,𝑟 ⊙ ẽ𝑛,𝑟 , (9)

where W𝑧 ,W𝑟 ,Wℎ ∈ R𝐿×2𝐿,U𝑧 ,U𝑟 ,U𝑜 ∈ R𝐿×𝐿 are learnable pa-

rameters, ⊙ represents element-wise multiplication. Adding the

results of𝑅 relation outputs together can obtain the final𝑛-th device

embedding:

e𝑑 = ⊕𝑅𝑟=1e𝑛,𝑟 , (10)

where ⊕ represents element-wise addition.

The device control embedding e𝑐 can be obtained similarly by

building device control RS-Graphs, where the node represents de-

vice control and the incoming edge and the outgoing edge represent

two relations, respectively.

4.3 Behavior Embedding
By concatenating the day of the week embedding, hour of the day

embedding, device embedding and device control embedding, we

can obtain the summarized representation h̃ of each behavior:

h̃ = [e𝑑𝑤 , eℎ, e𝑑 , e𝑐], (11)

To identify the position of the input variable, following [23], we add

positional encoding 𝑃𝐸 to the behavior representation as follows:

h = h̃ + 𝑃𝐸, (12)

𝑃𝐸 (𝑝𝑜𝑠,2𝑖) = sin

(
𝑝𝑜𝑠/100002𝑖/𝑑h̃

)
,

𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = cos

(
𝑝𝑜𝑠/100002𝑖/𝑑h̃

)
,

(13)

where 𝑖 denotes the 𝑖-th dimension of the behavior embedding, 𝑝𝑜𝑠

denotes the position of the behavior in the behavior sequence and

𝑑h̃ is the dimension of h̃.

5 INTENT-AWARE ENCODER LAYER
The purpose of the intent-aware encoder is to encode a sequence

of behaviors while considering the relationship between different

behaviors and the multiple intents of the user. To this end, we

design a self-attention layer to mine the context of behaviors, and

capsule networks to learn the multi-intent representations of users.

5.1 Self-attention Layer
We employ transformer encoder [23] for the self-attention layer

since it can effectivelymine global semantic information of behavior

sequence context by learning query, key and value matrices of

different variables. Given an input behavior representation h, the
query, key and value matrices can be calculated as following:

Q = hW𝑄 , K = hW𝐾 , V = hW𝑉 , (14)

whereW
𝑄 ,W𝐾 ,W𝑉

are the transformation matrices. The attention

score is computed by:

A = Attention(𝑄,𝐾,𝑉) = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 , (15)

where 𝑑𝑘 is the dimension of 𝐾 . To improve the stability of the

learning process and achieve higher performance, we adopt multi-

head attention in Q, K, and V. Then, the position-wise feed-forward

network (FNN) and residual connections are adopted:

h = Trans(h) = h + Ah + FNN(h + Ah), (16)

whereTrans(·) is the transformer and FNN(·) is a 2-layered position-
wise feed-forward network [23].

5.2 Capsule Networks
We utilize Capsule Networks [19] (CapsNets) to extract multiple

intents of the behavior sequence. A capsule is a set of neurons

whose activity vectors represent the instantiated parameters of a

specific type of entity, such as an object or object part, and the

length of the instantiation vector represents the probability that a

capsule’s entity exists [19]. Take a two-layer capsule network as

an example, there are two levels of capsules, i.e., low-level capsules

from the first layer and high-level capsules from the second layer.

The dynamic routing algorithm is used to compute the values of

high-level capsules given the values of low-level capsules.

In DeepUDI, intent-specific behavior representations are treated

as primary (low-level) capsules, while user multi-intent represen-

tations are treated as intent (high-level) capsules. We artificially

classify the intents of behaviors, and then each behavior represen-

tation is only connected to the corresponding intent capsule. (As

shown in Figure 3 (top right), the blue representations and the red

representations belong to two different intents, and are connected

to the corresponding intent capsules.) The representation h𝑖 of the
𝑖-th behavior denotes the 𝑖-th capsule of the primary layer. Based

on the primary capsules, the 𝑗-th intent capsule of the next layer

can be calculated as:

ˆh𝑗 |𝑖 = W𝑖 𝑗h𝑖 , (17)

where W𝑖 𝑗 denotes the learnable bilinear mapping matrix. The

candidate vector s𝑗 for intent capsule 𝑗 is computed as the weighted

sum of all primary capsules:

s𝑗 =
∑︁
𝑖

w𝑖 𝑗 ˆh𝑗 |𝑖 , (18)

where 𝑤𝑖 𝑗 denotes the weight for connecting low-level capsule 𝑖

and high-level capsule 𝑗 and is calculated by performing softmax

on routing logits 𝑏𝑖 𝑗 as:

w𝑖 𝑗 =
exp

(
𝑏𝑖 𝑗

)∑
𝑘 exp (𝑏𝑖𝑘)

, (19)

where 𝑏𝑖 𝑗 represents the log prior probability that capsule 𝑖 should

be coupled to capsule 𝑗 . The values of 𝑏𝑖 𝑗 are initialized to zeros,

and updated by the routing process described in Algorithm 1. Then

a non-linear “squashing” function [19] is adopted to squeeze the

candidate vector 𝑠 𝑗 so that short vectors are compressed to almost

zero length, while long vectors are compressed to a length slightly

below 1. The vector of intent capsule 𝑗 is calculated by:

c𝑗 = squash

(
s𝑗

)
=

s𝑗 2
1 +

s𝑗 2 s𝑗s𝑗 . (20)

The output intent capsules are formulated as [c1, ..., c𝐾] ∈ R𝐾×𝑙𝑒𝑛 (c)

to represent multiple intents of the behavior sequences, the 𝑙𝑒𝑛(c)
denotes the dimension of intent capsule. Finally, the inter-intent

aggregation mechanism is applied as follows:

C = W𝐶 [c1, ..., c𝐾], (21)

where W𝐶 ∈ R1×𝐾 is the learnable parameter and denotes the

weights of the intents.

Algorithm 1: DeepUDI Dynamic Routing.

Input: primary capsules h𝑖 , iteration times 𝑇 , number of intent

capsules 𝐾

Output: intent capules

{
c𝑗 , 𝑗 = 1, . . . , 𝐾

}
1: for each primary capsule 𝑖 and corresponding intent capsule 𝑗 :

initialize 𝑏𝑖 𝑗 = 0

2: for 𝑖𝑡𝑒𝑟 = 1, ...𝑇 do
3: for each primary capsule 𝑖: w𝑖 = softmax (b𝑖).
4: for each intent capsule 𝑗 : s𝑗 =

∑︁
𝑖

w𝑖 𝑗W𝑖 𝑗h𝑖 .

5: for each intent capsule 𝑗 : c𝑗 = squash

(
s𝑗

)
.

6: for each primary capsule 𝑖 and intent capsule 𝑗 :

𝑏𝑖 𝑗 = 𝑏𝑖 𝑗 + c⊤𝑗 W𝑖 𝑗h𝑖 .
7: end for
8: return

{
c𝑗 , 𝑗 = 1, . . . , 𝐾

}

6 HISTORICAL ATTENTION LAYER
[20] shows the multi-level nature of human behavior periodicity.

However, a static representation of user behavior sequences fails to

capture the periodicity and evolution of user behavior. In DeepUDI,

we propose a historical attention layer to enable the model to mine

periodic features from the up-to-date historical behavior sequences.

The historical attention layer uses the representation C𝑡 of the
current behavior sequence as a query vector to calculate the atten-

tion score between it and the historical behavior sequences. The

historical attention mechanism is formulated as follows:

𝛼𝑖 =
exp (𝛽𝑖)∑𝑡−1
𝑗=1 exp

(
𝛽 𝑗

) , 𝛽𝑖 = tanh (C𝑡W𝐻C𝑖) , (22)

where 𝛼𝑖 , 𝛽𝑖 ∈ R are normalized and unnormalized scores for the

𝑖-th history behavior sequence, respectively, C𝑖 is the 𝑖-th history

behavior sequence’s representation and𝑊𝐻 is the learnable param-

eter. Upon obtaining the attention weights, the prediction vector 𝑝

can be obtained by concating C𝑡 and the weighted sum of historical

behavior sequence representations:

𝑝 = Concat

(
C𝑡 ,

𝑡−1∑︁
𝑖=1

𝛼𝑖C𝑖

)
, (23)

Table 1: Datasets Description

Name Time period (Y-M-D) Sizes # Devices# Device controls

US 2022-02-22∼2022-03-2167,882 40 268

SP 2022-02-28∼2022-03-3015,665 34 234

FR 2022-02-27∼2022-03-25 4,423 33 222

AN 2022-07-31∼2022-08-31 1,765 36 141

Finally, we feed 𝑝 into the prediction layer and compute the proba-

bilities of device controls as follows:

ŷ = softmax

(
W𝑝𝑝

)
, (24)

where ŷ is the predicted probabilities of the next device control and

W𝑝 ∈ R | C |×𝑙𝑒𝑛 (𝑝)
is the learnable transformation matrix, |C| is

the number of device controls, 𝑙𝑒𝑛(𝑝) is the length of 𝑝 .

7 EXPERIMENTS
In this section, we conduct comprehensive experiments on four

real-world datasets to answer the following research questions:

• RQ1. Performance. Compared with other methods, does

DeepUDI have higher prediction performance of user device

interaction?

• RQ2. Ablation study. How do main components of Deep-

UDI affect the performance of UDI prediction?

• RQ3. Parameter study. How key parameters affect the per-

formance of DeepUDI?

• RQ4. Interpretability study. Can DeepUDI give a reason-

able explanation for the prediction results?

7.1 Experimental Setup
7.1.1 Datasets. We evaluate model performance using four real-

world smart home datasets, three (FR/SP/US) from public datasets
1

and one anonymous dataset (AN) collected by ourselves. The datasets

description is shown in Table 1. All datasets are split into training,

validation and testing sets with a ratio of 7:1:2. We label user be-

haviors with intents based on device attributes. For example, oven

belongs to cooking intent, and TV belongs to entertainment intent.

7.1.2 Baselines. We compare DeepUDI with existing user device

interaction prediction schemes in smart home and sequential user

behavior prediction schemes.

• HMM [10] regards all the device controls as states and builds

a transition matrix to capture the first order transition prob-

abilities between them.

• FPMC [18] combines markov chain with matrix factoriza-

tion to capture both sequential patterns and user preferences

for UDI prediction.

• LSTM [22] captures the long-term sequential influence, and

it can be applied to UDI prediction.

• CA-RNN [12] uses context-specific transitionmatrix in RNN

cell to consider context-dependent features in a sequential

recommendation.

1
https://github.com/snudatalab/SmartSense

• DeepMove [4] can be regarded as an enhanced version of

RNN with history attention mechanism. It captures both

user long and short-term mobility patterns.

• SR-GNN [25] applies gated graph neural network to gener-

ate latent vectors of items and then represents each session

through attention network for user behavior prediction.

• SmartSense [6] applies query transformer and common-

sense knowledge for smart home action recommendation.

7.1.3 Evaluationmetrics. AsUDI prediction is amulti-classification

problem, we use two metrics, top-k accuracy (Acc@K) and Macro-

F1, to evaluate the performance.

7.1.4 Implementation. All models (including baselines and Deep-

UDI) are implemented by PyTorch [16] and run on a graphic card

of GeForce RTX 3090 Ti. All models are trained with Adam opti-

mizer [9] with learning rate 0.001 and 𝑙2 regularization coefficient

0.00001. We train DeepUDI to minimize the cross-entropy loss. Dur-

ing training, we monitor Acc@1 and stop training if there is no

performance improvement in 10 steps. To ensure the efficiency of

training, we consider a fixed number of the up-to-date historical

sequences rather than all.

7.2 Performance Comparison (RQ1)
We use grid search to adjust the parameters (§7.4) of DeepUDI and

select the optimal results. The results are shown in Table 2. Bold

values indicate the optimal performance, and underlined values

indicate the second best performance. As can be observed, the pro-

posed DeepUDI scheme outperforms all competitors in most cases.

This is because our model simultaneously considers the complex

transitions, users’ multi-intent, and multi-level periodicity. The

traditional models HMM and FPMC show the worst performance.

The RNN-based models outperform the traditional models because

of stronger sequence modeling capability. SR-GNN outperforms

RNN-based models, because it can model complex transitions in

behavior sequences. By exploiting transformer to mine contextual

information, SmartSense achieves better performance than all other

baselines, but is still inferior to our proposed scheme.

7.3 Ablation Study (RQ2)
DeepUDI has three main components, Multi-Modal Embedding

Layer (MME), Intent-aware Encoder (IAE) and Historical Attention

Mechanism (HAM). To verify the contribution of each component

to the final prediction results, we conduct ablation experiments

while keeping the optimal parameters unchanged. DeepUDI-MME

denotes DeepUDI without MME layer, which, instead of RGGAT

and Time2Vec, uses a simple embedding layer (i.e., a fully connected

layer). DeepUDI-IAE denotes DeepUDIwithout IAE layer. DeepUDI-

HAM denotes DeepUDI without HAM layer. DeepUDI-ALL denotes

a DeepUDI with none of the three components. DeepUDI is the

scheme with all the three components. Table 3 shows that DeepUDI

outperforms all others on both AN and FR datasets, while DeepUDI-

ALL shows the worst Acc@1 and Macro-F1. In summary, each of

the three components of DeepUDI is helpful for UDI prediction.

7.4 Influence of Hyper-parameters (RQ3)
7.4.1 Number of layers in RGGAT. Figure 5(a) shows the perfor-
mance of DeepUDI with different numbers of RGGAT layers. We

find that when the number of RGGAT layers increases, Acc@1 will

first increase and then decrease, reaching the optimal value at 2

layers. This is because fewer layers can lead to under-fitting, and

too many layers can lead to over-smoothing [3].

7.4.2 Embedding dimension. As shown in Figure 5(b), when the

embedding dimension is too small, it cannot encode enough in-

formation, resulting in poor performance. As the embedding di-

mension becomes larger, the performance will gradually increase.

A larger embedding size does not necessarily lead to better per-

formance because of over-fitting issue. Therefore, we choose the

embedding size to be 50 to achieve the best performance.

7.4.3 Number of history behavior sequences. A larger number of

historical sequences allows the model to consider more histori-

cal information. However, too much historical information may

introduce more uncertainty and not contribute to performance im-

provement. Figure 5(c) shows that 15 historical sequences enables

DeepUDI to achieve the optimal performance.

7.4.4 Batch Size. Figure 5(d) shows the influences of batch size.

As the batch size increases, Acc@1 increases, and when the batch

size exceeds 512, the increase in batch size leads to a decrease in

performance due to larger batch size lower the generalization ability

of the model.

7.5 Case Study (RQ4)
To verify the interpretability of DeepUDI, we choose a behavior

sequence from the test set of the AN dataset and visualize the at-

tention weight of the RGGAT and the multi-intent weights in the

inter-intent aggregation layer. From the results shown in 6, two ob-

servations can be made. First, RGGAT can dig out potential device

correlations from complex and heterogeneous device transitions,

which reflect the user’s behavior habits. The high correlation be-

tween sweeper, window cleaner and TV shows that the user tends

to do some entertainment activities while doing housework activi-

ties. The correlation between curtains and bedlight is high because

both are operated right before bedtime and after getting up. Second,

DeepUDI can well explain the prediction results based on the intent

weight in the inter-intent aggregation layer. From the intent weight

heatmap, we can find that the four intents with the highest weights

in the capsule network are “sleep/getup”, “shower”, “leave/return”,

and “entertainment”, which reasonably explains why “bedlight:off”

(sleep/getup) , “shower:on” (shower), “air conditioner:change” (oth-

ers) “TV:off” (entertainment) are predicted by the model to be the

next action with the highest probabilities. In particular, the next

real action of the sequence is “bedlight:off”, which is also predicted

with the highest probability by the model. The reason why the

predicted probabilities of “shower:on” and “air conditioner:change”

are also relatively high is that the model has learned that the user

often takes a shower and adjusts the temperature of the air condi-

tioner before going to bed. The high probability of “TV:off” in the

prediction result is because the user had already turned on the TV

and needs to turn it off some time before bed.

Table 2: Performance comparison on four real world datasets.

Dataset Metric HMM FPMC LSTM CA-RNN DeepMove SRGNN SmartSense DeepUDI(Ours)

Acc@1 0.6099 0.6557 0.7062 0.7026 0.7116 0.9245 0.9407 0.9784
Acc@3 0.7501 0.7959 0.7843 0.8302 0.9272 0.9864 0.9731 0.9865
Acc@5 0.7714 0.7902 0.8328 0.9003 0.9542 0.9872 0.9838 0.9892AN

Macro-F1 0.2439 0.2845 0.3759 0.4159 0.5027 0.7368 0.7519 0.7997

Acc@1 0.6536 0.6814 0.6962 0.7893 0.7762 0.7819 0.7923 0.8144
Acc@3 0.7813 0.8271 0.8011 0.9148 0.9221 0.9197 0.9371 0.9238

Acc@5 0.8242 0.8508 0.8565 0.9425 0.9446 0.9435 0.9628 0.9512

FR

Macro-F1 0.1127 0.1279 0.1302 0.2102 0.2288 0.2482 0.2603 0.3425

Acc@1 0.6315 0.6964 0.7517 0.7853 0.7756 0.7815 0.7921 0.7923
Acc@3 0.7863 0.7916 0.8864 0.8915 0.9125 0.9303 0.9342 0.9375
Acc@5 0.8361 0.8605 0.9346 0.9117 0.9521 0.9603 0.9511 0.9642SP

Macro-F1 0.1382 0.1586 0.1756 0.1745 0.2159 0.2239 0.2244 0.3112

Acc@1 0.3327 0.3543 0.4286 0.5212 0.5527 0.5784 0.5935 0.6056
Acc@3 0.6881 0.6992 0.8209 0.8577 0.8844 0.8955 0.9056 0.9123
Acc@5 0.7258 0.7712 0.8929 0.9135 0.9418 0.9463 0.9489 0.9521US

Macro-F1 0.1069 0.1123 0.1265 0.1396 0.2388 0.2431 0.2451 0.3538

1 2 3 4 5
The Number of RGGAT Layers

0.775
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975

Ac
c@

1 AN
FR
SP

(a) Number of layers of RGGAT.

25 50 75 100 125
Embedding Dimension

0.775
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975

Ac
c@

1 AN
FR
SP

(b) Embedding dimension.

5 10 15 20 25
The Number of History Sequence

0.775
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975

Ac
c@

1 AN
FR
SP

(c) Number of history behavior se-

quences.

128 512 1024 2048
Batch Size

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Ac
c@

1

AN
FR
SP

(d) Batch size.

Figure 5: The influence of hyper-parameters on Acc@1.

Table 3: The Acc@1 and Macro-F1 results on AN and FR.

AN FR

Model

Acc@1 Macro-F1 Acc@1 Macro-F1

DeepUDI-MME 0.9487 0.7364 0.7851 0.2805

DeepUDI-IAE 0.9595 0.7585 0.7853 0.3103

DeepUDI-HAM 0.9676 0.7812 0.7988 0.3234

DeepUDI-ALL 0.9137 0.6934 0.7578 0.2511

DeepUDI 0.9784 0.7997 0.8144 0.3425

8 CONCLUSION
In this paper, we propose DeepUDI, a novel user device interac-

tion prediction framework, which achieves accurate UDI predic-

tion by addressing three challenges: 1) complex heterogeneous

transitions; 2) multiple intents of users; and 3) multi-level peri-

odicity of user behaviors. Specifically we model user’s behavior

sequences as RS-Graphs, and RGGAT is proposed to mine the com-

plex heterogeneous transitions in behavior sequences. We propose

an Intent-aware Encoder (IAE), which consists of capsule networks

and inter-intent aggregation mechanism to learn user multi-intent

representations. To learn the multiple periodicity of user behaviors,

on clean on power up close stop on sweeppower on

off 0.64 on 0.15 change 0.12 off 0.05 end 0.04

Prediction Results

RGGAT Attention Capsule Weight

Behavior Sequence
TV

window
cleaner

aircleaner

curtain

bedlight

sweeper

shower

air
conditioner

kettle

Figure 6: Attention score of RGGAT, capsule weight and top
5 prediction results of the example.

we propose a Historical Attention Mechanism (HAM) to learn peri-

odic behavior representations from historical behavior sequences.

Comprehensive experiments on four real-world datasets demon-

strate the effectiveness and interpretability of DeepUDI.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feed-

back and comments. This work is supported by the National Key

Research and Development Program of China under grant No.

2020YFB1804704, the National Natural Science Foundation of China

under grant No. 61972189, theMajor Key Project of PCL under grant

No. PCL2021A03-1, Shenzhen Science and Technology Innovation

Commission: Research Center for Computer Network (Shenzhen)

Ministry of Education, and the Shenzhen Key Lab of Software De-

fined Networking under grant No. ZDSYS20140509172959989.

REFERENCES
[1] Khaled A. Alaghbari, Mohamad Hanif Md. Saad, Aini Hussain, and Muham-

mad Raisul Alam. 2022. Activities Recognition, Anomaly Detection and Next

Activity Prediction Based on Neural Networks in Smart Homes. IEEE Access 10
(2022), 28219–28232. https://doi.org/10.1109/ACCESS.2022.3157726

[2] Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y Hammerla. 2019.

Relational graph attention networks. arXiv preprint arXiv:1904.05811 (2019).
[3] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the

topological view. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 3438–3445.

[4] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng

Jin. 2018. Deepmove: Predicting human mobility with attentional recurrent

networks. In Proceedings of the 27th International Conference on World Wide Web
(WWW). ACM, Lyon, 1459–1468.

[5] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez.

2012. Next place prediction using mobility markov chains. In Proceedings of the
First Workshop on Measurement, Privacy, and Mobility. ACM, 1–6.

[6] Hyunsik Jeon, Jongjin Kim, Hoyoung Yoon, Jaeri Lee, and U Kang. 2022. Accurate

Action Recommendation for Smart Home via Two-Level Encoders and Com-

monsense Knowledge. In Proceedings of the 31th ACM International Conference
on Information & Knowledge Management (CIKM). ACM, Atlanta, Georgia, USA,

1–10.

[7] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE 18th International Conference on Data Mining (ICDM).
IEEE, Singapore, 197–206.

[8] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet

Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus

Brubaker. 2019. Time2vec: Learning a vector representation of time. arXiv
preprint arXiv:1907.05321 (2019).

[9] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[10] Miao Lin, Vincent W. Zheng, and Shili Xiang. 2018. Sequential context modeling

for smart devices by Collaborative Hidden Markov Model. In 4th IEEE World
Forum on Internet of Things, WF-IoT 2018, Singapore, February 5-8, 2018. IEEE,
771–777. https://doi.org/10.1109/WF-IoT.2018.8355155

[11] Liwei Liu, Wei Chen, Lu Liu, Kangkang Zhang, Jun Wei, and Yan Yang. 2021.

TAGen: Generating Trigger-Action Rules for Smart Homes by Mining Event

Traces. In Service-Oriented Computing - 19th International Conference, ICSOC
2021, Virtual Event, November 22-25, 2021, Proceedings (Lecture Notes in Computer
Science, Vol. 13121), Hakim Hacid, Odej Kao, Massimo Mecella, Naouel Moha, and

Hye-young Paik (Eds.). Springer, 652–662. https://doi.org/10.1007/978-3-030-

91431-8_41

[12] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-

aware sequential recommendation. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, Barcelona, Spain, 1053–1058.

[13] Knud Lasse Lueth. 2018. State of the IoT 2018: Number of IoT devices now at 7B

– Market accelerating. https://iot-analytics.com/state-of-the-iot-update-q1-q2-

2018-number-of-iot-devices-now-7b/.

[14] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic matrix factorization.

Advances in Neural Information Processing Systems (NIPS) 20 (2007).
[15] Mustafa A. Mustafa, Alexandros Konios, and Matias Garcia-Constantino. 2021.

IoT-Based Activities of Daily Living for Abnormal Behavior Detection: Privacy

Issues and Potential Countermeasures. IEEE Internet Things Mag. 4, 3 (2021),

90–95. https://doi.org/10.1109/IOTM.0001.2000169

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems (NIPS) 32 (2019).

[17] Lakshmanan Rakkappan and Vaibhav Rajan. 2019. Context-aware sequential

recommendations withstacked recurrent neural networks. In Proceedings of the
28th International Conference on World Wide Web (WWW). ACM, San Francisco,

3172–3178.

[18] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-

izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th International Conference on World Wide Web (WWW). ACM, Raleigh,

NC, USA, 811–820.

[19] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing

between capsules. Advances in Neural Information Processing Systems (NIPS) 30
(2017).

[20] Vijay Srinivasan, Christian Koehler, andHongxia Jin. 2018. RuleSelector: Selecting

conditional action rules from user behavior patterns. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) 2, 1 (2018),
1–34.

[21] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation

via convolutional sequence embedding. In Proceedings of the eleventh ACM Inter-
national Conference on Web Search and Data Mining (WSDM). ACM, Los Angeles,

California, USA, 565–573.

[22] Niek Tax. 2018. Human Activity Prediction in Smart Home Environments

with LSTM Neural Networks. In 14th International Conference on Intelligent
Environments, IE 2018, Roma, Italy, June 25-28, 2018. IEEE, 40–47. https:

//doi.org/10.1109/IE.2018.00014

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in Neural Information Processing Systems (NIPS) 30 (2017).
[24] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. Proceedings of the 6th
International Conference on Learning Representations (ICLR) (2018).

[25] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.

Session-based recommendation with graph neural networks. In Proceedings of
the AAAI conference on Artificial Intelligence, Vol. 33. AAAI, Hilton Hawaiian

Village, Honolulu, Hawaii, USA, 346–353.

[26] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen

Zhuang, Junhua Fang, and Xiaofang Zhou. 2019. Graph Contextualized Self-

Attention Network for Session-based Recommendation.. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence (IJCAI), Vol. 19. Morgan

Kaufmann, Macao, China, 3940–3946.

[27] Masaaki Yamauchi, Masahiro Tanaka, Yuichi Ohsita, Masayuki Murata, Kensuke

Ueda, and Yoshiaki Kato. 2021. Smart-home anomaly detection using combination

of in-home situation and user behavior. CoRR abs/2109.14348 (2021). https:

//arxiv.org/abs/2109.14348

https://doi.org/10.1109/ACCESS.2022.3157726
https://doi.org/10.1109/WF-IoT.2018.8355155
https://doi.org/10.1007/978-3-030-91431-8_41
https://doi.org/10.1007/978-3-030-91431-8_41
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://doi.org/10.1109/IOTM.0001.2000169
https://doi.org/10.1109/IE.2018.00014
https://doi.org/10.1109/IE.2018.00014
https://arxiv.org/abs/2109.14348
https://arxiv.org/abs/2109.14348

	Abstract
	1 Introduction
	2 Related works
	3 DeepUDI Overview
	4 Multi-Modal Embedding Layer
	4.1 Time Embedding
	4.2 Device and Device Control Embeddings
	4.3 Behavior Embedding

	5 Intent-aware Encoder Layer
	5.1 Self-attention Layer
	5.2 Capsule Networks

	6 Historical Attention Layer
	7 Experiments
	7.1 Experimental Setup
	7.2 Performance Comparison (RQ1)
	7.3 Ablation Study (RQ2)
	7.4 Influence of Hyper-parameters (RQ3)
	7.5 Case Study (RQ4)

	8 Conclusion
	Acknowledgments
	References

