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Background

e Smart Home: Internet of Things (IoT) devices have been increasingly
involved in home life.

e User Device Interaction (UDI): interaction between user and device
reflects the habits of users using IoT devices.
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Background

e User Device Interaction (UDI) prediction is necessary for smart homes
e It can help remind users of key operations they have forgotten, e.g.,
“close the water valve”
e [t can help automate device control and realize fully automatic whole-
house intelligence, e.g., turn on the dryer automatically after washing the

clothes. — _
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Problem Definition

e User Device Interaction (UDI) Prediction in Smart Home:

e Given a behavior sequence s=[by, by,..., b,.], where b=[t, d, ¢, i] consists of
time t, device d, device control ¢ and intent i. For example, b=[2022-10-
15 11:30, oven, oven:switch, cooking] describes the behavior turn on the
oven at 11:30 on 2022-10-15, with the intent of cooking.

e The UDI prediction aims at predicting next behavior b, ;.
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Challenge #1

e Complex and Heterogeneous Transitions:

e Complex: there are transitions not only between consecutive devices,
but also in broader contexts.

e Heterogeneous: transitions caused by different device control.
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Challenge #2

e Multiple Intents:

e Laundry-related: water valve, washing machine and dryer.

e Cooking-related: oven, microwave and dish washer.

open turnon switch on switchon turnoff close switchon start

om0 &

A 4

t1 t2 t3 t4 t5 t6 t7 t8
S ndy T cooking T
' — = =N _
| o (@
: ——
|
|

water washing dryer

) oven Mmicrowave
valve machine

) (0] &



AAMAS 2023

Challenge #3

e Multi-level Periodicity:

e Day-level Periodicity: user leaves work on time on Wednesday and
Thursday, but work overtime once every 3 days, on Tuesday and Friday.

e Week-level Periodicity: user stays up late for games every Saturday night.
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Overview

e We propose DeepUDI:
e A novel approach for accurate UDI prediction.
e Idea #1: Relational Gated Graph Attention Network
e To construct graph from behavior sequence and leverage relational
gated GNN to capture the transitions between different device.
e Idea #2: Intent-aware Encoder
e To view intents as capsules and capture multiple intents by capsule
network.
e Idea #3: Historical Attention Mechanism
e To model correlation between current sequence and historical
sequences by attention mechanism.
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Multi-Modal Embedding Layer

e Time Embedding
e Time2vec can capture both periodic and non-periodic patterns of time.
e We denotes time as day of week and hour of day.
e For time 7, t2v(7)[i] denotes the i-th element of time embedding, w; and
@; are learnable parameters, F is a periodic activation function e.g., a sine

function.
WiT + @j, ifi=0
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Multi-Modal Embedding Layer

e Device and Device Control Embedding
e Relational Sequence Graph(RS-Graph):
e each node in the graph represents a device d,each edge (d,_1,d;)
indicates that the user accesses device d,, after accessing device d,,_1
e each device control represents a relation r
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Multi-Modal Embedding Layer

e Device and Device Control Embedding
e Relational Gated Graph Attention Network:
e message passing based on relation.
e feature update by GRU.
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Ia Intent-aware Encoder

e Self-attention and capsule network are employed as Intent-aware Encoder
e Self-attention Layer: mine global semantic information of behavior.
e Capsule Network: we treat behavior as primary capsules and use dynamic
routing to learn the probability of high-level intent capsule.
e Finally, we aggregate intent vector ¢ as sequence embedding C.

e W, is the learnable weight of different intents.
Algorithm 1: DeepUDI Dynamic Routing.

Prlmary_ Intent Input: primary capsules h;, iteration times T, number of intent

Capsule h capsules K

————— N Capsule ¢ s Output: intent capules {cj,j =1,.. .,K}
(. .‘ L equer.1ce 1: for each primary capsule i and corresponding intent capsule j:
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Historical Attention Mechanism

e Summarize the history sequence vector [C4, C5,C3,..C;_1] into p to

capture the multi-level periodicity
e a; and B; are normalized and unnormalized scores of €¢; for .,

respectively, Wy is the learnable weight.
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IE Datasets

e Datasets: we use four real-world datasets to evaluate DeepUDI

e Three datasets (US/SP/FR) from public dataset

e One dataset (AN) collected by ourselves

e Datasets are split into training/validation/testing with a ratio of 7:1:2

e All sequence instances are of length 10, and we use the first 9 behaviors as
input to predict the next behavior

e Eight intents: entertainment, shower, sleep/getup, leave/return, study,
cooking, cleaning, others.

Name Time period (Y-M-D) Sizes # Devices# Device controls

US 2022-02-22~2022-03-2167,882 40 268
SP 2022-02-28~2022-03-3015,665 34 234
FR 2022-02-27~2022-03-25 4,423 33 222

AN 2022-07-31~2022-08-31 1,765 36 141
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Ia Baselines and Evaluation Metrics

e Baselines: we compare DeepUDI with 7 competitors
e Traditional Models: HMM and FPMC
e RNN-based Models: LSTM, CA-RNN and DeepMove
e GNN-based Models: SR-GNN
e Transformer-based Models: SmartSense

e Evaluation Metrics:
e Acc@K: Top-K accuracy

| {s €5:p(s) € Pk(s)} |
N

Acc@K =

e Macro-F1: Macro averaging of F1 score
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Questions

e We answer the following research questions:

e RQ1 (Performance). Compared with other methods, does DeepUDI
have higher prediction performance of user device interaction?

e RQ2 (Ablation study). How do main components of DeepUDI affect
the performance of UDI prediction?

e RQ3 (Parameter study). How key parameters affect the
performance of DeepUDI?

e RQ4 (Interpretability study). Can DeepUDI give a reasonable
explanation for the prediction results?
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Experiment Results

e RQ1l: Compared with other methods, does DeepUDI have higher
prediction performance of user device interaction?
e Al: DeepUDI outperforms all competitors in most cases.

Dataset  Metric HMM FPMC LSTM CA-RNN DeepMove SRGNN SmartSense DeepUDI(Ours)

Acc@1 0.6099 0.6557 0.7062 0.7026 0.7116 0.9245 0.9407 0.9784

AN Acc@3 0.7501 0.7959 0.7843 0.8302 0.9272 0.9864 0.9731 0.9865
Acc@5 0.7714 0.7902 0.8328  0.9003 0.9542 0.9872 0.9838 0.9892
Macro-F1  0.2439 0.2845 0.3759  0.4159 0.5027 0.7368 0.7519 0.7997

Acc@1l 0.6536 0.6814 0.6962 0.7893 0.7762 0.7819 0.7923 0.8144

FR Acc@3 0.7813 0.8271 0.8011 0.9148 0.9221 0.9197 0.9371 0.9238
Acc@5 0.8242 0.8508 0.8565 0.9425 0.9446 0.9435 0.9628 0.9512
Macro-F1 0.1127 0.1279 0.1302 0.2102 0.2288 0.2482 0.2603 0.3425

Acc@1 0.6315 0.6964 0.7517  0.7853 0.7756 0.7815 0.7921 0.7923

Sp Acc@3 0.7863 0.7916 0.8864  0.8915 0.9125 0.9303 0.9342 0.9375
Acc@5 0.8361 0.8605 0.9346  0.9117 0.9521 0.9603 0.9511 0.9642
Macro-F1  0.1382 0.1586 0.1756  0.1745 0.2159 0.2239 0.2244 0.3112

Acc@1 0.3327 0.3543 0.4286  0.5212 0.5527 0.5784 0.5935 0.6056

Us Acc@3 0.6881 0.6992 0.8209  0.8577 0.8844 0.8955 0.9056 0.9123
Acc@5 0.7258 0.7712 0.8929  0.9135 0.9418 0.9463 0.9489 0.9521

Macro-F1  0.1069 0.1123 0.1265 0.1396 0.2388 0.2431 0.2451 0.3538
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¢ RQ2: How do main components of DeepUDI affect the performance of
UDI prediction?
e A2: All three components (MME: Multi-Modal Embedding Layer, IAE:
Intent-aware encoder and HAM: Historical Attention Mechanism) of
DeepUDI are contributive for UDI prediction.

Model AN FR
Acc@1 Macro-F1 Acc@1 Macro-F1
DeepUDI-MME | 0.9487 0.7364 0.7851 0.2805
DeepUDI-IAE 0.9595 0.7585 0.7853 0.3103
DeepUDI-HAM | 0.9676 0.7812 0.7988 0.3234
DeepUDI-ALL 0.9137 0.6934 0.7578 0.2511
DeepUDI 0.9784 0.7997 0.8144 0.3425
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e RQ3: How key parameters affect the performance of DeepUDI?

e A3: The best parameter combination: #of layers of RGGAT=2,

Embedding Dimension=50, # of History Sequence=15, Batch Size=512.
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Experiment Results

e RQ4: Can DeepUDI give a reasonable explanation for the prediction
results?
e A4: DeepUDI successfully learns the correlation between devices by

RGGAT and intents of user by capsule network.
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Conclusions

e We propose DeepUDI for accurate UDI prediction.
e Our main contributions are summarized as follows:
e Idea #1: Relational Gated Graph Attention Network
e Idea #2: Intent-aware Encoder
e Idea #3: Historical Attention Mechanism
e DeepUDI consistently outperforms state-of-the-art baselines and also offers
highly interpretable results.
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Thank you!

* Speaker: Jingyu Xiao
* Homepage: https://whalexiao.github.io/
* Email: jy-xiao21@mails.tsinghua.edu.cn
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