

User Device Interaction Prediction via Relational Gated Graph Attention Network and Intent-aware Encoder

Jingyu Xiao*, Qingsong Zou*, Qing Li ‡, Dan Zhao, Kang Li, Wenxin Tang, Runjie Zhou, Yong Jiang

- Smart Home: Internet of Things (IoT) devices have been increasingly involved in home life.
- User Device Interaction (UDI): interaction between user and device reflects the habits of users using IoT devices.

1 Background

- User Device Interaction (UDI) prediction is necessary for smart homes
 - It can help remind users of key operations they have forgotten, e.g., "close the water valve"
 - It can help automate device control and realize fully automatic wholehouse intelligence, e.g., turn on the dryer automatically after washing the clothes.

2 Problem Definition

• User Device Interaction (UDI) Prediction in Smart Home:

- Given a behavior sequence s=[b₁, b₂,..., b_n.], where b=[t, d, c, i] consists of time t, device d, device control c and intent i. For example, b=[2022-10-15 11:30, oven, oven:switch, cooking] describes the behavior turn on the oven at 11:30 on 2022-10-15, with the intent of cooking.
- The UDI prediction aims at predicting next behavior b_{n+1} .

3 Challenge #1

- Complex and Heterogeneous Transitions:
 - **Complex:** there are transitions not only between consecutive devices, but also in broader contexts.
 - Heterogeneous: transitions caused by different device control.

3 Challenge #2

• Multiple Intents:

- Laundry-related: water valve, washing machine and dryer.
- Cooking-related: oven, microwave and dish washer.

3 Challenge #3

- Multi-level Periodicity:
 - Day-level Periodicity: user leaves work on time on Wednesday and Thursday, but work overtime once every 3 days, on Tuesday and Friday.
 - Week-level Periodicity: user stays up late for games every Saturday night.

• We propose DeepUDI:

Overview

• A novel approach for accurate UDI prediction.

• Idea #1: Relational Gated Graph Attention Network

• To construct graph from behavior sequence and leverage relational gated GNN to capture the transitions between different device.

• Idea #2: Intent-aware Encoder

• To view intents as capsules and capture multiple intents by capsule network.

• Idea #3: Historical Attention Mechanism

• To model correlation between current sequence and historical sequences by attention mechanism.

Overview

5 Multi-Modal Embedding Layer

• Time Embedding

- Time2vec can capture both periodic and non-periodic patterns of time.
- We denotes time as day of week and hour of day.
- For time τ , $t2v(\tau)[i]$ denotes the i-th element of time embedding, ω_i and φ_i are learnable parameters, \mathcal{F} is a periodic activation function e.g., a sine function.

$$\mathbf{t}\mathbf{2}\mathbf{v}(\tau)[i] = \begin{cases} \omega_i \tau + \varphi_i, & \text{if } i = 0\\ \mathcal{F}(\omega_i \tau + \varphi_i), & \text{if } 1 \le i \le L - 1 \end{cases}$$

5 Multi-Modal Embedding Layer

- Device and Device Control Embedding
 - Relational Sequence Graph(RS-Graph):
 - each node in the graph represents a device d, each edge (d_{n-1}, d_n) indicates that the user accesses device d_n after accessing device d_{n-1}
 - each device control represents a relation r

5 Multi-Modal Embedding Layer

• Device and Device Control Embedding

- Relational Gated Graph Attention Network:
 - message passing based on relation.
 - feature update by GRU.

6 Intent-aware Encoder

• Self-attention and capsule network are employed as Intent-aware Encoder

- Self-attention Layer: mine global semantic information of behavior.
- Capsule Network: we treat behavior as primary capsules and use dynamic routing to learn the probability of high-level intent capsule.
- Finally, we aggregate intent vector c as sequence embedding C.
- W_C is the learnable weight of different intents.

7 Historical Attention Mechanism

- Summarize the history sequence vector $[C_1, C_2, C_3, \dots C_{t-1}]$ into p to capture the multi-level periodicity
 - α_i and β_i are normalized and unnormalized scores of C_i for C_t , respectively, W_H is the learnable weight.

• Datasets: we use four real-world datasets to evaluate DeepUDI

- Three datasets (US/SP/FR) from public dataset
- One dataset (AN) collected by ourselves
- Datasets are split into training/validation/testing with a ratio of 7:1:2
- All sequence instances are of length 10, and we use the first 9 behaviors as input to predict the next behavior
- Eight intents: entertainment, shower, sleep/getup, leave/return, study, cooking, cleaning, others.

Name	Time period (Y-M-D)	Sizes # I	Devices# Dev	ice controls
US	2022-02-22~2022-03-21	67,882	40	268
SP	2022-02-28~2022-03-30	15,665	34	234
FR	2022-02-27~2022-03-25	4,423	33	222
AN	2022-07-31~2022-08-31	1,765	36	141

9 Baselines and Evaluation Metrics

• Baselines: we compare DeepUDI with 7 competitors

- Traditional Models: HMM and FPMC
- RNN-based Models: LSTM, CA-RNN and DeepMove
- GNN-based Models: SR-GNN
- Transformer-based Models: SmartSense

• Evaluation Metrics:

• Acc@K: Top-K accuracy
Acc@K =
$$\frac{|\{s \in S : p(s) \in P_K(s)\}|}{|S|}$$

• Macro-F1: Macro averaging of F1 score

Macro-F1 =
$$\frac{\sum_{c} F1_{c}}{|C|}$$

• We answer the following research questions:

- RQ1 (Performance). Compared with other methods, does DeepUDI have higher prediction performance of user device interaction?
- RQ2 (Ablation study). How do main components of DeepUDI affect the performance of UDI prediction?
- RQ3 (Parameter study). How key parameters affect the performance of DeepUDI?
- RQ4 (Interpretability study). Can DeepUDI give a reasonable explanation for the prediction results?

- RQ1: Compared with other methods, does DeepUDI have higher prediction performance of user device interaction?
- A1: DeepUDI outperforms all competitors in most cases.

Dataset	Metric	HMM	FPMC	LSTM	CA-RNN	DeepMove	SRGNN	SmartSense	DeepUDI(Ours)
AN	Acc@1	0.6099	0.6557	0.7062	0.7026	0.7116	0.9245	0.9407	0.9784
	Acc@3	0.7501	0.7959	0.7843	0.8302	0.9272	0.9864	0.9731	0.9865
	Acc@5	0.7714	0.7902	0.8328	0.9003	0.9542	<u>0.9872</u>	0.9838	0.9892
	Macro-F1	0.2439	0.2845	0.3759	0.4159	0.5027	0.7368	0.7519	0.7997
FR	Acc@1	0.6536	0.6814	0.6962	0.7893	0.7762	0.7819	0.7923	0.8144
	Acc@3	0.7813	0.8271	0.8011	0.9148	0.9221	0.9197	0.9371	0.9238
	Acc@5	0.8242	0.8508	0.8565	0.9425	0.9446	0.9435	0.9628	<u>0.9512</u>
	Macro-F1	0.1127	0.1279	0.1302	0.2102	0.2288	0.2482	0.2603	0.3425
SP	Acc@1	0.6315	0.6964	0.7517	0.7853	0.7756	0.7815	0.7921	0.7923
	Acc@3	0.7863	0.7916	0.8864	0.8915	0.9125	0.9303	0.9342	0.9375
	Acc@5	0.8361	0.8605	0.9346	0.9117	0.9521	<u>0.9603</u>	0.9511	0.9642
	Macro-F1	0.1382	0.1586	0.1756	0.1745	0.2159	0.2239	0.2244	0.3112
US	Acc@1	0.3327	0.3543	0.4286	0.5212	0.5527	0.5784	0.5935	0.6056
	Acc@3	0.6881	0.6992	0.8209	0.8577	0.8844	0.8955	<u>0.9056</u>	0.9123
	Acc@5	0.7258	0.7712	0.8929	0.9135	0.9418	0.9463	<u>0.9489</u>	0.9521
	Macro-F1	0.1069	0.1123	0.1265	0.1396	0.2388	0.2431	0.2451	0.3538

- RQ2: How do main components of DeepUDI affect the performance of UDI prediction?
- A2: All three components (MME: Multi-Modal Embedding Layer, IAE: Intent-aware encoder and HAM: Historical Attention Mechanism) of DeepUDI are contributive for UDI prediction.

Model	P	N	FR		
Model	Acc@1	Macro-F1	Acc@1	Macro-F1	
DeepUDI-MME	0.9487	0.7364	0.7851	0.2805	
DeepUDI-IAE	0.9595	0.7585	0.7853	0.3103	
DeepUDI-HAM	0.9676	0.7812	0.7988	0.3234	
DeepUDI-ALL	0.9137	0.6934	0.7578	0.2511	
DeepUDI	0.9784	0.7997	0.8144	0.3425	

- RQ3: How key parameters affect the performance of DeepUDI?
- A3: The best parameter combination: #of layers of RGGAT=2, Embedding Dimension=50, # of History Sequence=15, Batch Size=512.

- RQ4: Can DeepUDI give a reasonable explanation for the prediction results?
- A4: DeepUDI successfully learns the correlation between devices by

RGGAT and intents of user by capsule network.

12 Conclusions

- We propose **DeepUDI** for accurate UDI prediction.
- Our main contributions are summarized as follows:
 - Idea #1: Relational Gated Graph Attention Network
 - Idea #2: Intent-aware Encoder
 - Idea #3: Historical Attention Mechanism
- DeepUDI consistently outperforms state-of-the-art baselines and also offers highly interpretable results.

- Speaker: Jingyu Xiao
- Homepage: <u>https://whalexiao.github.io/</u>
- Email: jy-xiao21@mails.tsinghua.edu.cn

