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MLLMs have been widely used in UI2Code task

• Converting webpage designs into functional UI code is labor-intensive in web development.

• Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in visually 

rich code generation tasks.

• MLLM-based UI code generation: benchmarks and methods.
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Existing Research Only Focuses the Static Webpage

• Existing research ignores the dynamic interactive properties and functionality.

• Interactive elements account for a large proportion of the webpage in real-world software practices..
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Task Definition

• UI2Code: it takes the static UI-Mockup S as input and generates a static webpage.

• Interaction2Code: it takes the interactive prototyping as input and generates an interactive webpage.
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Interactive Prototyping allows users to 
simulate interactions and navigate 
through the interface to test usability and 
functionality before full development. An 
interactive behavior is represented as an 
interactive prototype 𝐼𝑃 = { 𝑆𝑜 , 𝑆𝐼 } , 
where 𝑆𝑜 is the UIMockup of original 
webpage and 𝑆𝐼 is the UI-Mockup after 
the interaction 𝐼.



Benchmark Construction
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Data Statistics and Diversity
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• Topic and Framework Distribution. Our benchmark covers a diverse range of web topics with 

more than 15 types, including business, shop, technology, entertainment, and so on. It includes 

mainstream front-end open source frameworks such as react, next.js, vue, and angular.

• Interaction Type Distributions: 23 tag categories and 8 visual categories.



Metrics
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• Visual Similarity: we use CLIP score to measure the visual similarity. 

• Structure Similarity. SSIM (Structural Similarity Index Measure) score is applied to calculate the 

structure similarity.

• Text Similarity. We apply OCR tools to recognize the text in the webpages, and then use the 

BLEU score [45] to measure the text similarity between the two webpages. 

• Widget Match. Widget match measures the widget-level consistency between the original UI and 

the generated UI.  We calculate the Widget Similarity (WS) and Widget Match Rate (WMS) based 

on the method proposed by GUIPilot [46].

• Position Similarity. The position similarity between original interaction Io and generated interaction Ig is defined as

• Implement Rate (IR) measures the ratio of interactions successfully implemented by MLLM. An 

interaction is considered implemented if detectable by webdriver, and unimplemented otherwise.

• Usability Rate (UR). Human annotators are asked to interact with the generated webpage and 

judge the usability.



Metrics

8

• Visual Metrics (Full page and Interaction Part): CLIP, SSIM, Text (Bleu Score), Position and 

Widget Match (GUIPilot [1])

• Functional Metrics (Interaction Part): Implementation Rate, Usability Rate

[1] Liu, Ruofan, et al. “GUIPilot: A Consistency-Based Mobile GUI Testing Approach for Detecting Application-Specific Bugs.” ISSTA 2025



Model Performance: Automatic Metrics
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Limitation 1: The performance 
of the interactive part is lower 
than that of the full page, 
which is caused by the fact 
that the MLLMs do not pay 
attention to the interaction 
part enough.



Model Performance: Automatic Metrics
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Improvement 1: Interactive element 
highlighting.  We propose Chain-of-
Thought (CoT) and Mark prompts to 
force models to focus on the 
interaction.



Model Performance: Human Evaluation
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• These trend of human evaluation results are consistent with automatic metrics, confirming the 

validity of our automatic evaluation metrics. 



Failure Type Analysis
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• 10 types of Failure modes: the most critical failures are “Interactive element missing”, 

“Wrong function”, “No interaction” and “Effect on wrong element”.



Failure Type Analysis
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Failure Type Analysis
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Failure Type Analysis
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Limitation 2: MLLMs are prone to make 10 
types of failure. The main failure modes are 
“No interaction”, “Partial implementation”, 
“Interactive element missing”, and “Wrong
function”.

Improvement 2: Failure-aware Prompt (FAP). 
Based on failure types, we propose FAP to 
stimulate the self-criticism ability of MLLMs, 
thereby avoiding problems that may occur in 
the Interaction-to-Code task.



Visual Saliency vs Performance
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• Visual Saliency: The proportion of interactive 

area to the total UI area.

Limitation 3: The group with lower visual saliency 
has lower SSIM and position similarity.

Improvement 3: Visual Saliency Enhancement 
(VSE). By cropping the image to increase the 
proportion of the interactive part, the model 
can better perceive the interaction area.



Inputs Modality vs Performance
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• We conduct experiments on GPT-4o using 10 randomly selected webpages from 

failure cases. Human annotators provide textual descriptions for each interaction 

(e.g., "clicking the login button triggers a new window with two input boxes").

Limitation 4: Visual-only (V) and text-only (T) inputs 
exhibits unsatisfactory performance.

Improvement 4: Visual and Textual Description 
Combination. Combined visual and textual inputs 
can optimize performance.



Ablation Study and Case Study
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• Ablation Study: Interactive Element Highlighting (IEH), Failure-aware Prompt 

(FAP), Visual Saliency Enhancement (VSE) and Textual Description (TD)

• Case Study: four interactive webpage development tasks are assigned to 

four programmers with similar front-end development experience.



Conclusions
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Task Formulation Benchmark Construction

(1) Interactive Element Highlighting (IEH).

(2) Failure-aware Prompting (FAP).

(3) Visual saliency enhancement (VSE).

(4) Visual and =Textual Description Combination (TD).

ImprovementsKey Findings
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We are the first to formulate the Interaction-
to-Code task and present a systematic study 
on the code generation capabilities of 
MLLMs for dynamic interaction of webpages.

We build the first real-world webpage interaction datasets 
Interaction2Code containing 127 webpages and 374 
interactions, spanning 15 webpage topics and 31 interaction 
types. 

(1) MLLMs struggle to generate interactive part 
compared with full static webpage generation.
(2) MLLMs are prone to make 10 types of failures.
(3) MLLMs perform poorly on interactions that are 
not visually obvious.
(4) Single visual modality description is not enough 
for MLLMs to understand the interaction.



Thank you!

• Speaker: Jingyu Xiao

• Codes: https://github.com/WebPAI/Interaction2Code

• Homepage: https://whalexiao.github.io/  

• Email: jyxiao@link.cuhk.edu.hk  

https://github.com/WebPAI/Interaction2Code
https://whalexiao.github.io/
mailto:jyxiao@link.cuhk.edu.hk
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