
Interaction2Code: Benchmarking MLLM-based
Interactive Webpage Code Generation from

Interactive Prototyping

Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zixin Wang, Xinyi Xu, Wenxuan Wang,

Zhiyao Xu, Yuhang Wang, Michael R. Lyu

MLLMs have been widely used in UI2Code task

• Converting webpage designs into functional UI code is labor-intensive in web development.

• Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in visually

rich code generation tasks.

• MLLM-based UI code generation: benchmarks and methods.

2

[FSE 2025] DCGen [FSE 2025] DeclarUI [ISSTA 2025] LayoutCoder

[WWW 2025] Webcode2M[NAACL 2025] Design2Code[NeurIPS 2024] Web2Code

Existing Research Only Focuses the Static Webpage

• Existing research ignores the dynamic interactive properties and functionality.

• Interactive elements account for a large proportion of the webpage in real-world software practices..

3

Task Definition

• UI2Code: it takes the static UI-Mockup S as input and generates a static webpage.

• Interaction2Code: it takes the interactive prototyping as input and generates an interactive webpage.

4

Interactive Prototyping allows users to
simulate interactions and navigate
through the interface to test usability and
functionality before full development. An
interactive behavior is represented as an
interactive prototype 𝐼𝑃 = { 𝑆𝑜 , 𝑆𝐼 } ,
where 𝑆𝑜 is the UIMockup of original
webpage and 𝑆𝐼 is the UI-Mockup after
the interaction 𝐼.

Benchmark Construction

5

Data Statistics and Diversity

6

• Topic and Framework Distribution. Our benchmark covers a diverse range of web topics with

more than 15 types, including business, shop, technology, entertainment, and so on. It includes

mainstream front-end open source frameworks such as react, next.js, vue, and angular.

• Interaction Type Distributions: 23 tag categories and 8 visual categories.

Metrics

7

• Visual Similarity: we use CLIP score to measure the visual similarity.

• Structure Similarity. SSIM (Structural Similarity Index Measure) score is applied to calculate the

structure similarity.

• Text Similarity. We apply OCR tools to recognize the text in the webpages, and then use the

BLEU score [45] to measure the text similarity between the two webpages.

• Widget Match. Widget match measures the widget-level consistency between the original UI and

the generated UI. We calculate the Widget Similarity (WS) and Widget Match Rate (WMS) based

on the method proposed by GUIPilot [46].

• Position Similarity. The position similarity between original interaction Io and generated interaction Ig is defined as

• Implement Rate (IR) measures the ratio of interactions successfully implemented by MLLM. An

interaction is considered implemented if detectable by webdriver, and unimplemented otherwise.

• Usability Rate (UR). Human annotators are asked to interact with the generated webpage and

judge the usability.

Metrics

8

• Visual Metrics (Full page and Interaction Part): CLIP, SSIM, Text (Bleu Score), Position and

Widget Match (GUIPilot [1])

• Functional Metrics (Interaction Part): Implementation Rate, Usability Rate

[1] Liu, Ruofan, et al. “GUIPilot: A Consistency-Based Mobile GUI Testing Approach for Detecting Application-Specific Bugs.” ISSTA 2025

Model Performance: Automatic Metrics

9

Limitation 1: The performance
of the interactive part is lower
than that of the full page,
which is caused by the fact
that the MLLMs do not pay
attention to the interaction
part enough.

Model Performance: Automatic Metrics

10

Improvement 1: Interactive element
highlighting. We propose Chain-of-
Thought (CoT) and Mark prompts to
force models to focus on the
interaction.

Model Performance: Human Evaluation

11

• These trend of human evaluation results are consistent with automatic metrics, confirming the

validity of our automatic evaluation metrics.

Failure Type Analysis

12

• 10 types of Failure modes: the most critical failures are “Interactive element missing”,

“Wrong function”, “No interaction” and “Effect on wrong element”.

Failure Type Analysis

13

Failure Type Analysis

14

Failure Type Analysis

15

Limitation 2: MLLMs are prone to make 10
types of failure. The main failure modes are
“No interaction”, “Partial implementation”,
“Interactive element missing”, and “Wrong
function”.

Improvement 2: Failure-aware Prompt (FAP).
Based on failure types, we propose FAP to
stimulate the self-criticism ability of MLLMs,
thereby avoiding problems that may occur in
the Interaction-to-Code task.

Visual Saliency vs Performance

16

• Visual Saliency: The proportion of interactive

area to the total UI area.

Limitation 3: The group with lower visual saliency
has lower SSIM and position similarity.

Improvement 3: Visual Saliency Enhancement
(VSE). By cropping the image to increase the
proportion of the interactive part, the model
can better perceive the interaction area.

Inputs Modality vs Performance

17

• We conduct experiments on GPT-4o using 10 randomly selected webpages from

failure cases. Human annotators provide textual descriptions for each interaction

(e.g., "clicking the login button triggers a new window with two input boxes").

Limitation 4: Visual-only (V) and text-only (T) inputs
exhibits unsatisfactory performance.

Improvement 4: Visual and Textual Description
Combination. Combined visual and textual inputs
can optimize performance.

Ablation Study and Case Study

18

• Ablation Study: Interactive Element Highlighting (IEH), Failure-aware Prompt

(FAP), Visual Saliency Enhancement (VSE) and Textual Description (TD)

• Case Study: four interactive webpage development tasks are assigned to

four programmers with similar front-end development experience.

Conclusions

19

Task Formulation Benchmark Construction

(1) Interactive Element Highlighting (IEH).

(2) Failure-aware Prompting (FAP).

(3) Visual saliency enhancement (VSE).

(4) Visual and =Textual Description Combination (TD).

ImprovementsKey Findings

19

We are the first to formulate the Interaction-
to-Code task and present a systematic study
on the code generation capabilities of
MLLMs for dynamic interaction of webpages.

We build the first real-world webpage interaction datasets
Interaction2Code containing 127 webpages and 374
interactions, spanning 15 webpage topics and 31 interaction
types.

(1) MLLMs struggle to generate interactive part
compared with full static webpage generation.
(2) MLLMs are prone to make 10 types of failures.
(3) MLLMs perform poorly on interactions that are
not visually obvious.
(4) Single visual modality description is not enough
for MLLMs to understand the interaction.

Thank you!

• Speaker: Jingyu Xiao

• Codes: https://github.com/WebPAI/Interaction2Code

• Homepage: https://whalexiao.github.io/

• Email: jyxiao@link.cuhk.edu.hk

https://github.com/WebPAI/Interaction2Code
https://whalexiao.github.io/
mailto:jyxiao@link.cuhk.edu.hk

	Slide 1: Interaction2Code: Benchmarking MLLM-based Interactive Webpage Code Generation from Interactive Prototyping
	Slide 2: MLLMs have been widely used in UI2Code task
	Slide 3: Existing Research Only Focuses the Static Webpage
	Slide 4: Task Definition
	Slide 5: Benchmark Construction
	Slide 6: Data Statistics and Diversity
	Slide 7: Metrics
	Slide 8: Metrics
	Slide 9: Model Performance: Automatic Metrics
	Slide 10: Model Performance: Automatic Metrics
	Slide 11: Model Performance: Human Evaluation
	Slide 12: Failure Type Analysis
	Slide 13: Failure Type Analysis
	Slide 14: Failure Type Analysis
	Slide 15: Failure Type Analysis
	Slide 16: Visual Saliency vs Performance
	Slide 17: Inputs Modality vs Performance
	Slide 18: Ablation Study and Case Study
	Slide 19: Conclusions
	Slide 20: Thank you!

