



## SlideCoder: Layout-aware RAG-enhanced Hierarchical Slide **Generation from Design**

Wenxin Tang\*, Jingyu Xiao\*, Wenxuan Jiang, Xi Xiao, Yuhang Wang, Xuxin Tang, Qing Li, Yuehe Ma, Junliang liu, Shisong Tang, Michael R. Lyu







- Natural language cannot fully express complex layouts
- Multimodal models struggle with dense visual structures
- Generated code often fails to execute correctly

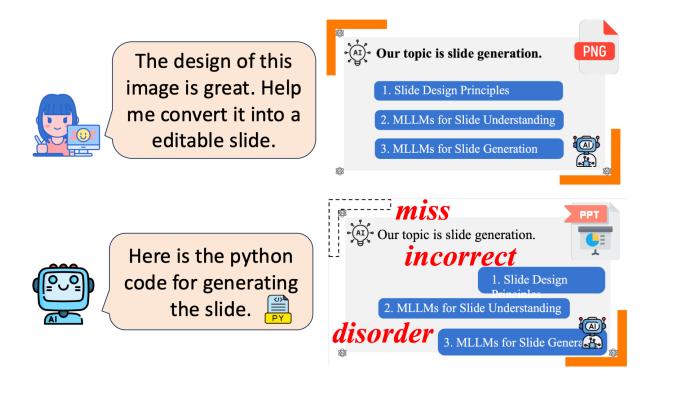



Figure 1: Illustration of slide generation scenarios from design and mistakes made by MLLMs.



- A new benchmark for image-to-slide generation
- Categorized by Slide Complexity Metric (SCM)
- 900 samples across simple, medium, and complex layouts

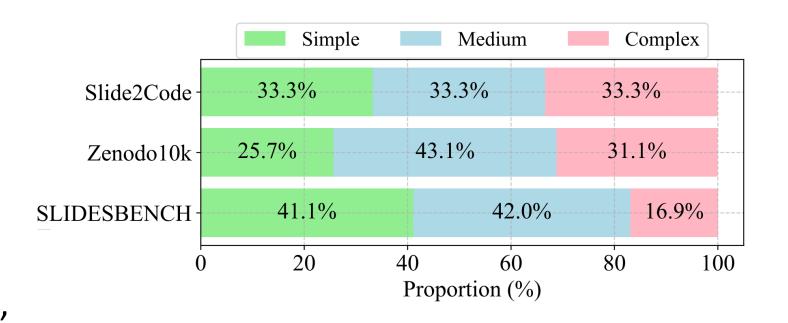
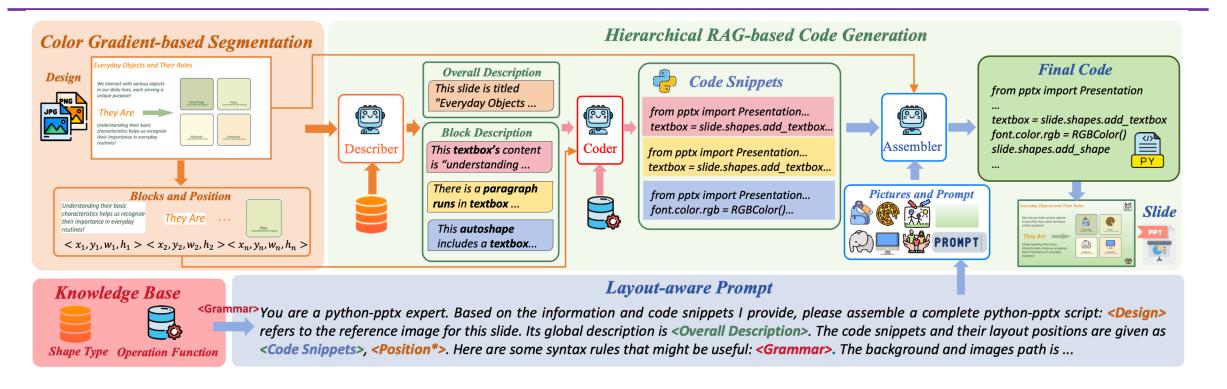




Figure 2: Proportion of samples across three levels in the Slide2Code, Zenodo10k, and SLIDEBENCH datasets.







- CGSeg Color Gradient-based Segmentation
- H-RAG Hierarchical Retrieval-Augmented Generation
- LAP Layout-aware Prompting





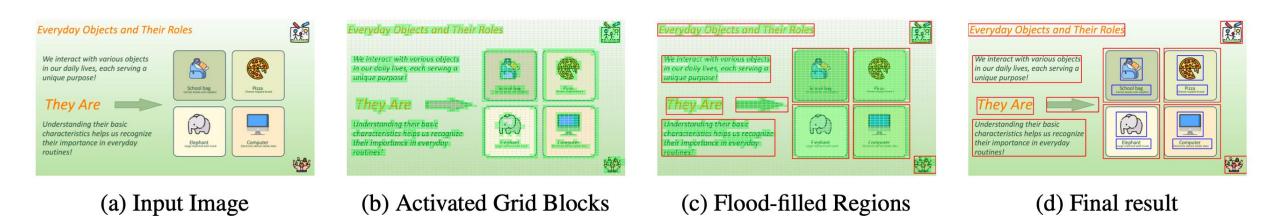
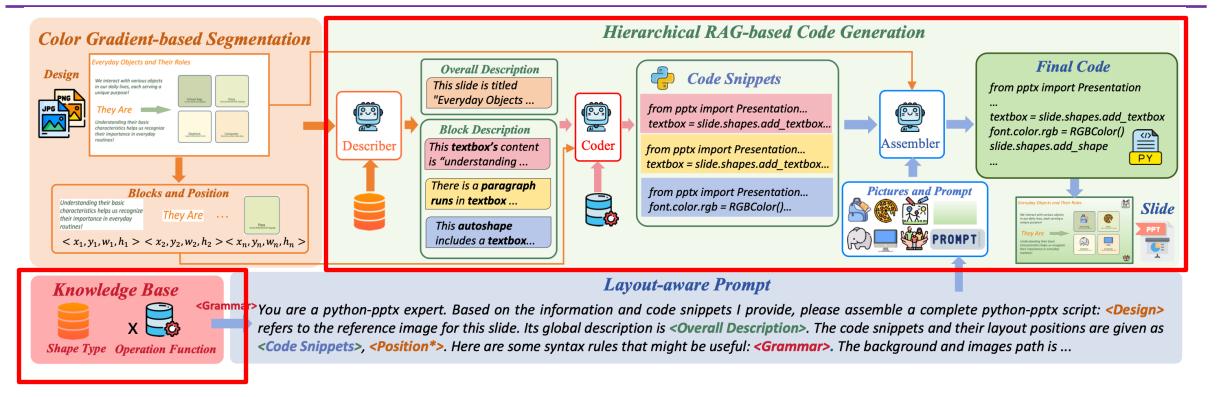
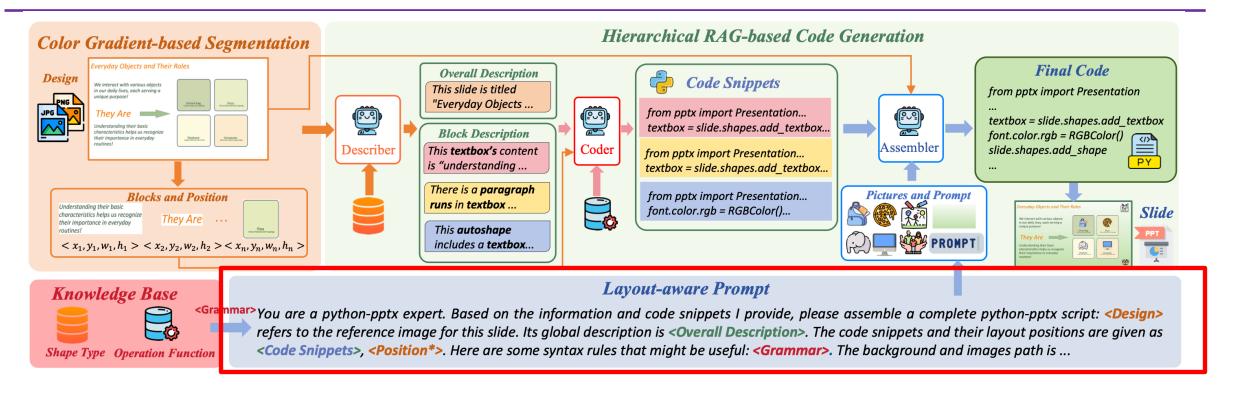




Figure 4: An example of CGSeg applied to a slide reference image. The algorithm begins by computing color gradients (a-b), fills them (c), and recursively segments sub-regions (d).

- Recursive segmentation using color gradient
- Preserves spatial hierarchy and object boundaries
- Produces semantic sub-regions for code generation








- Two-level knowledge bases:
  - Shape Type KB: Object definitions and templates
  - Operation KB: Functions and syntax patterns
- Three agents: Describer, Coder, Assembler



## Layout-aware prompt





- Incorporates layout parameters (x, y, w, h)
- Uses consistent pptx coordinate units (inches)
- Ensures structural and visual alignment



- Based on Qwen2.5-VL-7B
- Reverse-engineered data generation pipeline
- Expands object and style diversity (10 object types, 44 styles)

Table 2: Object Types and Corresponding Style count

| Type Name        | Ours | AutoPresent's |
|------------------|------|---------------|
| title            | 10   | 3             |
| textbox          | 10   | 5             |
| bullet points    | 8    | 5             |
| background color | 1    | 1             |
| image            | 2    | 2             |
| placeholder      | 4    | _             |
| freeform         | 2    | _             |
| connector        | 5    | _             |
| table            | 4    | _             |
| triangle         | 5    | _             |

## **Experimental Results**



- Compared models:

   AutoPresent, GPT-4o,
   Gemini 2.0, SlideMaster
- SlideCoder achieves top scores across all difficulty levels
- +40.5 points improvement over baselines

Table 1: Results on Slide2Code (top) and SLIDESBENCH (bottom) using SlideCoder and AutoPresent with different MLLMs. Green, yellow, and red indicate simple, medium, and complex levels in SlideCoder. **Bolded values** mark the best result per level.

| 80.3<br>79.1<br>73.4<br>79.0<br>71.6<br>64.7<br>75.6<br>72.6 | 48.6<br>41.4<br>48.5<br>44.8<br>51.5<br>45.2<br>45.4                                                                 |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 79.1<br>73.4<br>79.0<br>71.6<br>64.7<br>75.6<br>72.6         | 41.4<br>48.5<br>44.8<br>51.5<br>45.2<br>45.4                                                                         |
| 79.1<br>73.4<br>79.0<br>71.6<br>64.7<br>75.6<br>72.6         | 41.4<br>48.5<br>44.8<br>51.5<br>45.2<br>45.4                                                                         |
| 73.4<br>79.0<br>71.6<br>64.7<br>75.6<br>72.6                 | 48.5<br>44.8<br>51.5<br>45.2<br>45.4                                                                                 |
| 79.0<br>71.6<br>64.7<br>75.6<br>72.6                         | 44.8<br>51.5<br>45.2<br>45.4                                                                                         |
| 71.6<br>64.7<br>75.6<br>72.6                                 | 51.5<br>45.2<br>45.4                                                                                                 |
| 64.7<br>75.6<br>72.6                                         | 45.2<br>45.4                                                                                                         |
| 75.6<br>72.6                                                 | 45.4                                                                                                                 |
| 72.6                                                         |                                                                                                                      |
|                                                              | 260                                                                                                                  |
| (0.0                                                         | 36.8                                                                                                                 |
| 63.3                                                         | 47.1                                                                                                                 |
| 91.1                                                         | 76.7                                                                                                                 |
| 86.4                                                         | 61.7                                                                                                                 |
| 82.8                                                         | 54.2                                                                                                                 |
| 90.7                                                         | 87.0                                                                                                                 |
| 85.5                                                         | 76.6                                                                                                                 |
| 81.2                                                         | 71.6                                                                                                                 |
| 91.8                                                         | 89.1                                                                                                                 |
| 86.2                                                         | 85.5                                                                                                                 |
| 82.6                                                         | 78.4                                                                                                                 |
| <u> </u>                                                     |                                                                                                                      |
| 73.7                                                         | 65.3                                                                                                                 |
| 66.0                                                         | 40.4                                                                                                                 |
| 70.8                                                         | 66.9                                                                                                                 |
| 80.0                                                         | 68.4                                                                                                                 |
| 80.0                                                         | 75.0                                                                                                                 |
| 80.9                                                         | <b>78.8</b>                                                                                                          |
|                                                              | 63.3<br>91.1<br>86.4<br>82.8<br>90.7<br>85.5<br>81.2<br>91.8<br>86.2<br>82.6<br>73.7<br>66.0<br>70.8<br>80.0<br>80.0 |



Table 3: Overall performance of ablation study.

| Setting        | Execution % | Overall |
|----------------|-------------|---------|
| SlideCoder     | 100.0       | 89.9    |
|                | 100.0       | 85.8    |
|                | 100.0       | 82.2    |
| w/o Layout     | 100.0       | 81.2    |
|                | 93.9        | 73.6    |
|                | 93.9        | 71.8    |
| w/o CGSeg      | 75.8        | 55.4    |
|                | 51.5        | 39.6    |
|                | 69.7        | 48.4    |
| w/o H-RAG      | 90.9        | 80.4    |
|                | 81.8        | 69.3    |
|                | 84.8        | 70.7    |
| Native Setting | 75.8        | 53.9    |
|                | 48.5        | 37.4    |
|                | 66.7        | 46.9    |



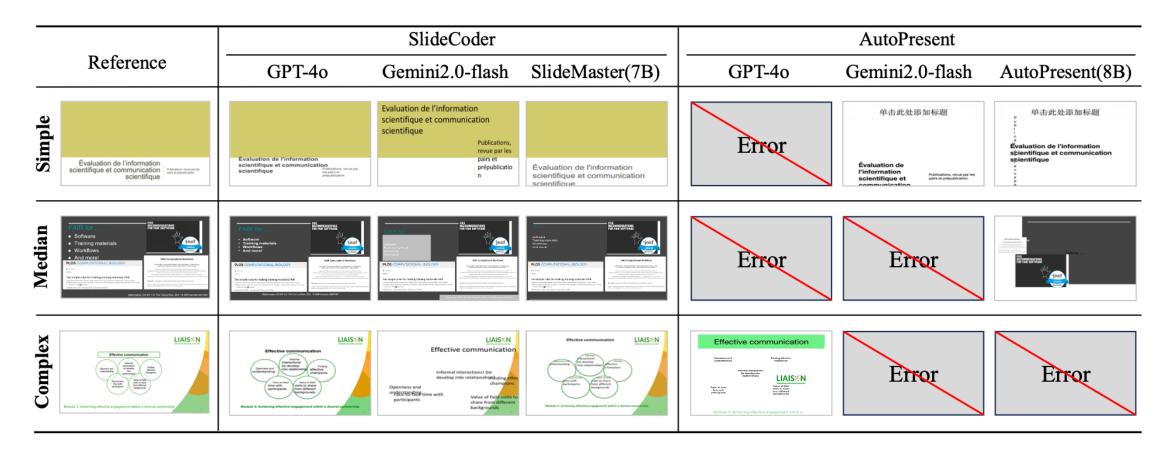
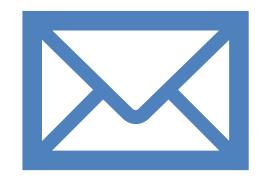



Figure 5: Examples of slides generated by different methods in three difficulty levels.




## Thank you!

• Speaker: Wenxin Tang

• Codes: <a href="https://github.com/vinsontang1/SlideCoder">https://github.com/vinsontang1/SlideCoder</a>

• Email: twx24@mails.tsinghua.edu.cn

