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Abstract—Programmable Data Plane (PDP) has been leveraged
to offload Network Functions (NFs). Due to its high processing
capability, the PDP improves the performance of NFs by more
than one order of magnitude. However, the coarse-grained NF
orchestration on the PDP makes it hard to fulfill the dynamic
service chain demands and unreasonable network function de-
ployment causes long end-to-end delays. In this paper, we propose
the Flexible Network Function (FlexNF) deployment on the PDP.
First, we design an NF Selection Framework, leveraging the
service selection label and re-entering operations for flexible NF
orchestration. Second, to support runtime NF reconfiguration to
meet the dynamic flow demands, we propose the Per-Flow On-
Demand servicing mechanism, where one Match-Action Table
with multiple mixed NFs works as different NFs for different
flows. Third, to ensure the QoS of flows, on the one hand,
we design an SP-aware NF Placement Algorithm to find a
near-optimal placement solution that accommodates peak traffic
volume while minimizing the overall routing path lengths of all
the requests, on the other hand, we design a Two-Stage Service
Path Construction Algorithm to provide on-path service while
considering load balancing. We implement 15 types of network
functions on the P4 switch, based on which we construct the
comprehensive experiments. FlexNF reduces the traffic delay by
42.6% while increasing the service chain acceptance rate by five
times compared with current solutions. Besides, when switching
functions, the FlexNF improves the throughput by 2.04Gbps
and reduces the packet loss by 8.269% compared with current
solutions.
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I. INTRODUCTION

ETWORK Functions (NFs), such as Load Balancers
(LBs), Firewalls, Failure Detectors, and Network Ad-
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dress Translators (NATs), are widely deployed in data centers
[1], [2], mobile networks [3], and cloud environments [4], etc.
NFs have a long history of being implemented as expensive
and proprietary hardware middleboxes, with problems of high
management complexity and operational cost [5]. Therefore,
Network Function Virtualization (NFV) [6] has been proposed
to revolutionize the way that traditional networks are managed
and operated. By decoupling NFs from the underlying hard-
ware and running them as software-based virtual devices in the
cloud environments, NFV offers great flexibility [7] and cost-
effectiveness for provisioning network services. However, the
benefits of NFV are accompanied by performance penalties.
The software-based NFs could introduce significant perfor-
mance overheads, resulting in prolonged packet processing
delay and compromised packet processing throughput [7].

To accelerate NFV service, significant research efforts [8]—
[12] have been dedicated to hardware-offloading of network
functions (NFs) using general hardware platforms, which pre-
serves the openness of NFs. With the advent of Programmable
Data Plane (PDP) [13], [14], data-plane offloading is envi-
sioned as an effective approach for NFV acceleration [15]. The
PDP provides high-speed processing capability that can suffice
the line rate (e.g., the programmable Tofino switch supports a
port bandwidth of 12.8Tbps [16]). Moreover, PDP can flexibly
accommodate advanced network functions and applications
through customized packet processing logics. By installing
customized NF programs on the PDP, existing works [8], [17]-
[21], achieve full line-rate processing, with no performance
loss compared to the forwarding-only PDP. However, there
are still three challenges when offloading NFs to the PDP.

First, each programmable switch only provides fixedly
deployed service of network functions installed in a pre-
determined order. This inflexibility causes a dilemma when
offloading NFs to the PDP. On the one hand, we can offload
a single NF instance to a programmable switch and enable
service chaining by routing network flows across different
switches. But such an exclusive deployment forces flows to go
through more hops, leading to the increased end-to-end delay.
On the other hand, we can deploy a sub-chain, consolidating
multiple NFs, on a switch so that service chaining can poten-
tially be fulfilled within fewer switches, as will be detailed in
Section II. However, this approach limits the scalability of the
composable service chains on the PDP, making it infeasible
for dynamic NFV management.

Second, changing the programs installed on switches
would cause service disruption. As the demands of network
traffic are constantly changing, the network functions installed
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on the switches may need to be changed frequently. However,
the programmable switches do not support hot swapping of
the deployed NFs. Changing the packet processing logic of
a switch requires stopping the device and installing a newly
compiled configuration, costing more than 10 seconds, which
significantly affects the passing traffic on the switch.

Third, enabling on-path serving is challenging. Usually,
the network uses the shortest path to forward traffic, which
we call on-path servicing. However, due to unreasonable
network function deployment, the traffic would endure an extra
forwarding delay than the shortest path due to the off-path
service chaining, resulting in poor routing performance. As
such, it is critical to carefully plan the placement of NFs and
construct the forward path of service chain demands to reduce
the end-to-end delay experienced by traffic.

In this paper, we propose FlexNF!, a flexible and efficient
PDP-based NFV framework. We conquer the above challenges
with the following key ideas:

o« We design an NF Selection Framework (NSF), lever-
aging labels to instruct flows to run or skip NFs, which
enables flexible and fine-grained NF orchestration.

e We propose a Per-Flow On-Demand (PFOD) servicing
mechanism, which deploys several different NFs on the
same Match-Action Table (MAT) of the P4 switch. For
different flows, the MAT works as different NFs. In
this way, an NF service can be enabled or disabled by
adjusting the corresponding rules in a hot-swapping way.

o To reduce the off-path service delay, we design an SP-
aware NF Placement Algorithm (SNPA) and a Two-
Stage Service Path Construction Algorithm (TSPC).
Specifically, SNPA is executed during the initial deploy-
ment stage for the optimal NF placement and TSPC opti-
mizes NF service performance with the shortest response
delay based on dynamic network statistics, with load
balancing requirements taken into account.

To sum up, in the offline mode, SNPA finds an NF de-
ployment solution that minimizes the total route lengths of
all historical requests as much as possible, with memory
constraints on all switches along the paths satisfied. Then in
the online mode, when flows enter the ingress switch, the NSF
will flexibly select or skip some NF instances and the PFOD
will dynamically switch NFs based on the demands of flows.
Finally, the TSPC will assign service paths to serve the flows
while considering both the route length and load balancing.

We implement the prototypes of 15 stateless or stateful NFs
on the P4 switch to verify the feasibility of the FlexNF im-
plementation model. To further demonstrate the performance
of FlexNF, we construct comprehensive experiments based on
the implemented prototypes and the real-world traffic [23].
The experiment results show that: 1) FlexNF improves service
chain acceptance rate by five times, while increasing packet
forwarding delay by at most 1.7% introduced by the NSF,
compared with current solutions; 2) Compared with the normal
switch program switching process, under the switching interval
of the 60s, the PFOD servicing mechanism improves the
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throughput by 2.04Gbps and reduces the packet loss rate by
8.269%; 3) SNPA and TSPC can reduce the traffic routing
delay by about 42.6%.

The rest of the paper is organized as follows. We first
introduce the motivation in Section II-A and design challenges
in Section II-B. The overview of FlexNF is presented in
Section III. Then, we elaborate on the design details in
Section IV. In Section V, we describe the algorithms for NF
placement and orchestration. Section VI details the implemen-
tation of FlexNF. In Section VII, the performance of FlexNF
is evaluated. Section VIII presents the related works. Finally,
we conclude the paper in Section IX.

II. BACKGROUND AND MOTIVATION
A. Issues of Service Chain Composition on the PDP
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Fig. 1. The issue of service chain composition with PDP NFs.

The PDP-based NF offloading is gradually taken as an
effective approach to achieve better performance (i.e., high
throughput). To serve the dynamic service chain demands
of incoming traffic, it is necessary to effectively orchestrate
the NFs on the PDP in real time to form the specific paths.
However, the NFs deployed on a single PDP switch must be
either completely skipped or triggered in the pre-determined
order for the incoming packets. Under such circumstances, a
service chain demand has to be fulfilled with the device-level
sub-chains (sub-chain for short) as the basic units, causing
three practical issues:

o Scalability issue of Service Chain Composition. In
real networks, there exists a considerable number of
dynamically changing service chain demands. The coarse
sub-chain deployment granularity limits the number of
service chains that a PDP can support. Fig. 1(a) shows
a network with two sub-chains (NAT-Firewall (FW) and
Big Flow Detector (BFD)-LB) installed. It can accom-
modate requests of four different service chains: NAT-
FW, BFD-LB, NAT-FW-BFD-LB and BFD-LB-NAT-FW.
However, NAT-FW-LB and NAT-FW-BFD, cannot be
served, even though all the required instances are in fact
available in the network.

o Network Function Switching Interruption. A switch
has to process different service chain demands of dy-
namic traffic, which leads to frequent network function
switching on the switch. Changing the service of a
programmable switch at runtime requires a device inter-
ruption of more than 10 seconds due to configuration
adjustment, causing severe performance degradation.

o Off-path Caused Delay. As each sub-chain is fixedly
settled on a specific switch, to traverse the NFs in the
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service chain order, traffic often has to endure an extra
forwarding delay than the shortest path due to the off-
path service chaining problem, resulting in poor routing
performance. Fig.1(b) shows a network with three sub-
chains installed, i.e., DNS Reflection Detection(DRD),
NAT-FW and BFD-LB. Suppose there are three requests
from hl to h2 with three different service chains: NAT-
FW, DRD-NAT-FW and NAT-FW-BFD-LB. To meet the
service chain demands, the network forwards all these
requests with the path “s1-s3-s2” rather than the shortest
path “s1-s2”, causing a longer forwarding delay.

B. Design Challenges

To better understand the PDP-based NF orchestration prob-
lem, we use a toy example with three programmable switches
interconnected as shown in Fig. 2(a). We implement three
types of NFs (Network Address Translation, Firewall and Load
Balancer) in the network with different sub-chain deployment
granularity. As Fig. 2(b) shows, on the one hand, deploying a
sub-chain consisting of more NFs on every switch results in a
very low acceptance ratio (X %fo_se;fv‘fjsuz&“em), due to the
limited service chain support in the network, but benefits from
smaller forwarding delays. On the other hand, deploying a
single NF on every switch causes significant forwarding delay
for traversing the required NF nodes in the off-path way,
though enjoying a high acceptance ratio.
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Fig. 2. Motivating example: performance evaluation on different deployment
solutions. SC-n represents installing a sub-chain consisting of n NFs on each
switch. FCT denotes flow completion time. Avg.FCT indicates the average
value of FCT. Opt.FCT indicates the average FCT when flows go through the
shortest path.

To endow scalability and flexibility to the orchestration of
PDP-based NFs, some works [24], [25] attempt to virtualize
the PDP by leveraging match-action table entries to emulate
the control logic at runtime. However, [24] and [25] over-
consume memory resources by 7x and 3.2x than the original
Tofino switch [16], respectively.

As shown in Table I, all existing methods can only partially
solve the problems of service chain composition on the PDP.
That is, none of them can achieve scalable service chain
provision, on-path traffic serving and cost-effective memory
usage at the same time.

In order to solve the above problems, we design the FlexNF
architecture, addressing the following challenges:

o Selective Serving Mechanism on the PDP. Fixed-node
NF orchestration schemes lead to service chain inscala-
bility and extra routing delay caused by off-path service
chaining. To orchestrate the NFs on a programmable
switch just like the software NFs on the X86 server, it

TABLE I
COMPARISON OF THE EXISTING SOLUTIONS.

Scheme Scalability | Flexibility | Cost-effective
NF-Granularity v X v
Sub-Chain Granularity X X v
PDP Virtualization [24], [25] v v X
FlexNF v v v

is necessary to replace the consolidated programs with a
Selective Serving Mechanism (SSM) on the PDP device
to enable fine-grained NF orchestration. To this end, we
design a label-based NF Selection Framework (NSF) to
support SSM on the PDP, which supports multiple service
chain demands in one single PDP device.

o Real-time Network Functions Switching on the PDP.
Services offered by a single switch are limited by the
pre-installed programs. When the demands of the flows
passing through switches change drastically, the installed
NF needs to be adjusted in time to avoid detours and
service quality degradation. However, reconfiguration of
a P4 hardware switch incurs a delay of tens of seconds,
which causes service interruption. Therefore, we design
a Per-Flow On-Demand (PFOD) servicing mechanism to
achieve real-time network function switching.

e On-Path Traffic Serving. If the traffic service chain
demand cannot be completed along the Shortest Path
(SP), the QoS of traffic will be damaged. The difficulty is
to ensure on-path servicing for all traffic as much as pos-
sible, which requires making full use of the resources on
the SP to satisfy more functional demands. Therefore, we
propose an SP-aware NF Placement Algorithm (SNPA),
and a Two-Stage Service Path Construction Algorithm
(TSPC) to ensure servicing quality.

III. SYSTEM OVERVIEW

In this section, we provide an overview of FlexNF, which
includes the data plane and control plane module components.
Fig. 3 illustrates the architecture and the workflow of FlexNF
for orchestrating PDP-offloaded NFs.

A. FlexNF Data Plane

The data plane is designed for two goals: 1) orchestrating
NFs flexibly to enable arbitrary combinations and orders of
NF executions; 2) switching NFs in realtime to adapt to the
dynamic demands of flows. The data plane mainly consists of
two modules: the NF Selection Framework (§IV-A) and the
Per-Flow On-Demand Servicing Mechanism (§IV-B).

NF Selection Framework (NSF). To satisfy diverse service
chain demands, different NF instances within one single switch
or across multiple switches should be dynamically composed
together, with some instances selected and others skipped
along the forwarding paths. To this end, we design an NF
Selection Framework (NSF) with a Flow Classifier to allocate
service selection labels and a Service Selection Process to flex-
ibly select or skip some NF instances. Moreover, we propose
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Fig. 3. The architecture of FlexNF.

a Multi-Level Re-enter Mechanism based on the pipeline re-
enter mechanism (i.e., resubmit and recirculation) [26], [27]
provided by the P4 switch ASIC to offer more possible ways
of NF orchestration, bringing higher flexibility and scalability.

Per-Flow On-Demand (PFOD) Servicing Mechanism.
To support non-disruptive NF switching to adapt to dynamic
changes in traffic demands, we propose a PFOD servicing
mechanism. In the PFOD, multiple NFs are deployed in one
Match-Action Table. Different NFs can be assigned to different
flows and they can be switched dynamically by installing flow
table rules.

B. FlexNF Control Plane

The control plane has two tasks: 1) deciding the NF instance
placement strategy, based on which NF instances are installed
on switches; and 2) finding the best service path for each flow
to fulfill the requested NFs with low overheads.

To fulfill the first task, we propose an SP-aware NF
Placement Algorithm (§V-A), which is called offline when
the topology is constructed or changed. It aims at finding an
NF deployment solution that minimizes the total route lengths
of all requests as much as possible, with memory constraints
on all switches along the paths satisfied. To this end, the
proposed algorithm analyzes historical requests and prioritizes
the deployment of popular network functions by placing them
on the nodes that cover the most shortest paths.

To fulfill the second task, we design a two-stage service path
construction strategy to quickly find a low-overhead service
path to serve each new flow. The first stage, i.e., a Static
Path Generation Algorithm (§V-B1), is executed offline only
when the topology is constructed or changed. It takes each
flow’s historic demands as inputs and calculates a candidate
path set which contains the top-k shortest paths to fulfill the
requested NFs of the flow. Whenever a new flow request
arrives, the second stage of the strategy, i.e., the Dynamic Path
Selection Algorithm (§V-B2), works out the optimal paths

with minimum link loads from the candidate set generated by
the first stage, while considering realtime load balancing.

C. FlexNF Workflow

Assuming that a flow f with the service chain demand
“NAT—BFD” arrives at an ingress switch, FlexNF processes
it through four steps. First, as shown in Fig. 3, when the first
packet of f enters the ingress switch, a match table miss occurs
in the Flow Classifier, as the label entries of this flow are not
installed yet, then the flow is sent to the controller. Second,
after receiving the Packetln event, the controller runs the
Dynamic Path Construction Algorithm to choose the optimal
path with the requested NFs of this flow from the candidate
path set generated by the Static Path Generation Algorithm.
Third, for each switch along the selected path, the controller
installs the label entries in the Flow Classifier, the forwarding
table and the NF table for f. Last, the subsequent packets
of f will match the installed rules on the switches along the
chosen optimal path, and be forwarded to the destination with
the service chain demand fulfilled.

IV. DATA PLANE DESIGN

The FlexNF data plane consists of an NF Selection Frame-
work and a Per-Flow On-Demand Servicing Mechanism,
which are designed to improve the scalability of the service
chain and enable non-disruptive NF switching.

A. NF Selection Framework

As shown in Fig. 4, to achieve fine-grained NF orchestration
on the PDP, we propose the NF Selection Framework (NSF)
with three components: Flow Classifier, Service Selection
Process, and Multilevel Re-enter Mechanism. Algorithm 1
describes the workflow of NSF.

Recirculate

I
. - '
Sewipe Get Multilevel output  Forward
Selection Service Re-enter ——F--------
Process Mechanism \ )
i
i

Programmable Data Plane

Fig. 4. NF Selection Framework.

When the first packet of one flow arrives at the ingress
switch, it will be sent to the control plane due to a match
table miss in the Flow Classifier. After receiving the packet,
the control plane issues the service selection label [; to the
Flow Classifier. Then the NSF performs the following process.
First, the Flow Classifier (lines 1-5 in Algorithm 1) assigns a
service selection label [y for incoming packets belonging to
flow f based on the flow key key; (e.g., IP src, IP src/dst or
the 5-tuple, implementation depends on the practical demand),
entries of which are installed by the controller at runtime. ¢
is composed of k iteration labels I;, where & is the number
of NF instances deployed on the switch and each l} contains
the processing information for a single pipeline iteration. The
i-th bit of the iteration label l} in binary form indicates
whether packets of flow f should be processed by the i-
th NF in this iteration. For example, for a switch deployed
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with NAT—LB—FW, an iteration label Ob101 means that the
corresponding flow needs to pass through NAT and FW with
LB being skipped. Next, the module will truncate the service
selection label [y according to the re-enter times ¢y for the
iteration label l}. The re-enter times ¢y should be stored in
the available field of the packet header (such as the TOS
field of IP protocol and VLAN ID field) to maintain the
information across pipeline processing iterations. Then, the
iteration label l} is truncated from the service selection label
l; after performing the AND bit operation with the constructed
mask, whose corresponding bits are set to 1.

The Service Selection Process reduces the granularity of
service chain composition from device-level service to NF-
level service and ensures the flexibility of service chain
construction. Lines 7-12 in Algorithm 1 demonstrate the
control logic of the Service Selection Process. N represents
the set of network function instances deployed on the PDP,
and |N| stands for the number of NFs. For the incoming
packets, the Service Selection Process iterates through /N and
decides whether to apply each NF according to the bit-wise
comparison result of iteration label I;. If the i-th bit of I/ is
set to 1, the current packets will pass through the ¢-th NF.

The Service Selection Process brings huge runtime flexi-
bility by eliminating the tight coupling of physical nodes and
consolidated service. The extra latency incurred by the Service
Selection Process is proved to be negligible in Section VII-B
(about 1.6% of the extra forwarding delay).

Conventionally, traffic can only pass through the pipeline
once with the predetermined NF order. As a consequence,
the number of possible NF combinations is limited by the
deployed sequence of switches. In FlexNF, we design a
Multilevel Re-enter Mechanism to offer richer service function
chain demands with existing switch resources, and bring
higher flexibility and scalability. Lines 14-27 in Algorithm 1
describe the control logic of the Multilevel Re-enter Mech-
anism. First, the mechanism checks whether each flow has
completed all processing by calculating the unused part of the
service selection label ;. Based on the re-enter times ¢y, we
can obtain the remaining label by right shifting the service
selection label l} by the used length, i.e., [ bits, to determine
whether the next round of processing is needed.

For packets that have to traverse the pipeline multiple times,
we utilize two kinds of pipeline re-enter mechanisms i.e.,
resubmitting and recirculating provided by the programmable
switch chip to balance the latency cost and flexibility. The
resubmitting mechanism sends packets from the ingress de-
parser unit back to the ingress parser unit [28] whereas
the recirculating mechanism sends packets back through a
dedicated loopback port. However, these mechanisms have
their own shortcomings. Resubmitting only supports one it-
eration of re-entering due to the hardware limitation while the
recirculating incurs longer latency than resubmitting (about 5
times by our evaluation in Section VII-B). To this end, the
Multilevel Re-enter Mechanism maintains re-enter times ¢y
and chooses resubmit or recirculation for packets accordingly.
When ¢y = 0, the corresponding packets are passing through
the pipeline for the first time and are resubmitted for a shorter
delay. Meanwhile, for packets that enter the pipeline more

Algorithm 1: NF Selection Framework Logic
Input: packet pkt cflow f
Output: service selection label [y, iteration label l}
// Flow Classifier
2 Get service selection label /¢ based on flow key keyy ;
Get re-enter times ¢y and the amount of network
functions k;
Mask m + [(1 << k) — 1] << tf-k;
Iteration label I’y < p&m;
/! Service Selection Process
for i < 0 to |[N| do
Mask m + (1 << 1) ;
if l}&m =1 then
10 | Apply the i-th NF n; € N ;
1 end
12 end
13 // Multilevel Re-enter Mechanism
14 Used length | < (k- (tf + 1)) ;
15 Remaining label 7y < [y >> [ ;
16 if 7y = 0 then

-

w

N-TEN-CREE L

17 ‘ Forward ;

18 end

19 else

20 if £y = 0 then
21 | Resubmit ;
22 end

23 else

24 | Recirculate ;
25 end

26 <ty +1;
27 end

than once, the recirculating is applied. Although the number
of recirculating operations is not technically limited, it should
be set cautiously, considering the bandwidth limitation of the
dedicated loopback port. That is, the controller needs to care-
fully weigh the number of recirculation on each programmable
switch to avoid affecting the throughput performance of flows.
Then, for packets that need to be processed for another round,
the re-enter times record ¢y should be incremented by one.
In NSF, the re-enter times record is stored in the idle field of
every packet (e.g., the TOS field of IP protocol, or the VLAN
ID field), so that consistency is maintained through multiple
rounds of pipeline processing. In addition, before forwarding,
the re-enter times record will be set to zero to avoid confusing
the processing in subsequent switches.

B. Per-Flow On-Demand Servicing Mechanism

Although the NF Selection Framework (NSF) provides a
flexible combination of NFs, services offered by a single
switch are still limited by the pre-installed functions. However,
the traffic demands are dynamically changing. When the
demands of traffic passing through function switches change
drastically, the installed NF needs to be adjusted in time to
avoid detours and service quality degradation. However, as
shown in Table II, reconfiguration of P4 hardware switches
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Fig. 5. Per-Flow On-Demand Servicing Mechanism.

induces delays of tens of seconds, significantly damaging the
service quality. The reconfiguration process includes shutting
down the current P4 program, starting a new ready-compiled
program, configuring ports and flow table rules.

TABLE II
TIME OF CHANGING THE INSTALLED NF ON P4 HARDWARE SWITCH.

Method Edgecore H3C  Openmesh
Time(s) 31 17 10

PFOD (ours)
0.0028

HyperVDP [25] is proposed to support online adjustment
of installed NF. It uses three pipelines to simulate each native
Match-Action Table (MAT), where each MAT in the matching
pipeline uses TCAM to match the header, standard metadata
and user-defined metadata, respectively. Although it provided
flexibility in dynamical adjustment, huge memory overhead
(more than 800bits/flow) was introduced.

In FlexNF, we propose the Per-Flow On-Demand (PFOD)
servicing mechanism that can dynamically change the NF
configuration according to the flow demands at a small cost.

The design of PFOD is shown in Fig. 5. It is constructed
by a composite matching-action table. The matching field in
PFOD is a collection of matching fields required by all NFs,
whose length equals the maximum length of potential NF
matching fields. Supposing there are two NF functions: N F
with keys Kj (32 bits) and Ko (32 bits), NF> with keys
K3 (64 bits) and K4 (64 bits). We can merge them in one
MAT with match fields M; (64 bits) and M,y (64 bits). To
avoid conflicts in matching fields, we set the five-tuple as
Flow;q to identify a flow as the basis for allocating NF;4.
The N F;, filed is used to indicate which NF should be run,
e.g., NF;q = 0 stands for running N F}, < K;, K5 > are read
into < My, My > for executing < A;, As > (the blue line).
Different NFs can be assigned to different flows in PFOD, and
they can be switched dynamically by installing corresponding
rules.

______________

¢’ v ([MAT,| [MAT, |
(] o | (]|
NEL] [INF2 - IR, NF, || !

_____________________________

(a) Original deployment. (b) PFOD deployment.

Fig. 6. Comparison of original deployment and PFOD deployment.

The PFOD provides great flexibility. As shown in Fig. 6(a),
NF; and NF5 are deployed in two tables respectively. The
switch can only meet the requirements of NFj, NF» and
NF-NF,. If the flow’s demand changes to N F>-N F1, then
the NF of the switch needs to be reconfigured. PFOD satisfies
the requirement well by switching M AT} to N F» and M AT5
to N F} without reconfiguration.

V. CONTROL PLANE DESIGN

To ensure the QoS of flows and provide on-path service
for dynamic requests, the forwarding delays on service paths
should be reduced as much as possible. The control plane
achieves this goal through the joint efforts from an offline NF
placement algorithm and a two-stage dynamic service chain
construction strategy.

A. SP-aware NF Placement Algorithms (SNPA)

1) Problem Formulation: We model the data plane topol-
ogy as a graph G = (V, N, E, P), where V, N and E denote
the node set, NF set and link set, respectively. Set P contains
all the shortest paths between every two nodes in V. Mean-
while, we model the historical requests as R = (b;., Sy, vs, v4),
where S, denotes the service chain demand of request r, v
denotes the source node, v, denotes the destination node and
b, denotes the initial data rate used in Dynamic Path Selection
Algorithm (Section V-B2).

When the topology is constructed or changed, a decision
on how to place NFs on switches must be made. In FlexNF,
we aim at finding an NF placement scheme that can minimize
the service path length of all incoming flow requests while
satisfying memory constraints along the path. To this end, the
problem are formulated as follows:

min E E Ip;l, (D
Yy
ri€Rp;EP;

subject to

3 .
SN lmer oyt eSH] < wev @
ri€Rp;EPy,
|Si]

s7 gitt
Zys(lpj) 'yd(lpj) =18 —-1, VreR 3)
Jj=0 '
|P7“z| = ‘Sz| + 1, Vr; € R 4)
Zy& <a, Yy eV (5)

where 7, denotes whether path p passes through node v, and
7, denotes whether path p starts from node v. In the problem
formulation, the decision parameter y,' is variable, all other
parameters are given. The memory consumption c is directly
derived from historical traces.

This problem aims at minimizing the total service path
length of all requests, as can be seen from the objective
function (1), where p; denotes the j-th sub-path from NF S
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to NF S;1 on the optimal forwarding path P; for request r;
(Ipj] is the length of path p;). For simplicity of notation, we
extend S; with source node v, and destination node v,.

On each node v € V, forwarding a flow takes c; switch
memory and NF n takes c¢(n;) memory for each request.
The constraint (2) ensures that forwarding entries and NF
flow entries do not exceed switch memory capacity c¢; for
every switch. The decision variable y;' denotes whether NF
n is deployed on node v. s(p;) and d(p;) denote the source
and destination of sub-path p;. Constraint (3) ensures each
request is correctly fulfilled by its allocated path. Constraint
(4) describes the size of sub-path set P,,, which is equal to
|Si|+1 due to |S;| +2 stages including NF node, source node
and destination node of request 7;.

There are some hardware resource limitations on P4
switches. First, each switch has only a limited number of
stages to deploy network functions (e.g., each pipeline on the
tofino switch has only 12 stages). Second, the metadata has
limited length to store the label (the length is O(NF's)) of
the NF Selection Mechanism. As such, Constraint (5) limits
the number of NFs on each node with an adjustable threshold
«. This constraint ensures that the NF deployment scheme
does not exceed the hardware limitations of switches. FlexNF
operators need to adjust o according to the specific switch
hardware resource limitations. In our experiments, after actual
deployment testing, we set o to 10. Constraint (6) ensures that
each network function is deployed at least once. It is worth
noting that the SNPA algorithm is executed in the offline mode,
during which the actual utilization overheads of links are not
known. As such, bandwidth constraints are not considered by
the SNPA algorithm. Instead, they will be considered in the
Dynamic Path Selection Algorithm (Section V-B2) in online
mode to ensure that the link utilization is not saturated.

2) A Greedy Algorithm for the SP-aware NF Placement
Problem: The SNPA for NF placement takes historical flows
as inputs and calculates the total service path length. However,
the distribution of traffic can change over time (i.e., the dis-
tribution of incoming flows differs from the historical flows).
In order to adapt to changes in traffic distribution, we set a
time window (i.e., 10s) to periodically collect historical flow
information and execute the SNPA to update the deployment
of NFs. To this end, we need to design an algorithm to solve
the NF placement problem within O(10s) time complexity.

NF Placement Problem has been proven NP-hard [29].
Mathematical programming methods such as Integer Linear
Programming (ILP) [30] and mixed ILP (MILP) [31] are
applied to solve the problem. However, these methods suf-
fer from high computational complexity when obtaining the
optimal solutions. Moreover, since the objective function (1)
can not be expressed explicitly by the variable y,', we cannot
directly use the ILP/MILP solver to solve the problem. We
propose a greedy algorithm (Algorithm 2) to solve the SP-
aware NF placement problem with near-optimal solutions but
a relatively short execution time.

Our optimization goal is to minimize the route length of all
requests. To this end, we endeavor to deploy NF functions on
the shortest path as much as possible. The algorithm prioritizes
the deployment of popular network functions, preferring nodes

that cover the shortest paths.

First, lines 3-8 count the occurrences of different NFs in all
service chains as the popularity. Second, for the function n f,
lines 13-17 calculate the shortest path set P of requests that
need to go through n f and the shortest path set M,, covered by
node n. Third, lines 25-29 preferentially select nodes covering
the most paths in P to deploy nf. The meetcondition(n,nf)
function determines whether the deployment of n f on node n
meets the constraints (2) and (5).

Algorithm 2: SP-aware NF Placement Algorithm
Input: Topology G = (N, V, E), Requests R
Output: NF Placement Strategy

_ {11 1 INT N |V
Y= y17y27"'7y|v‘7"'ay1 » Y2 7y|V‘

1 Step 1: Calculate NF popularity: (N F;, Pop;, Reg;).
2 NFList = [(NF1,0,0),...,(NF|y|,0,0)]
3 for request r € R do

4 for network function nf € .5, do

5 NFListnf][1] «+ NFList[nf][1] + 1

6 NFListinf][2] < NFList[nf][2] U {r}
7 end

8 end

9 Sort N Flist in descending order by popularity.
10 Step 2: Deploy network functions.

1 for nf € NFlist do

12 P« 0;Vn € N, M, + 0;

13 for request r € nf.requests do

14 path = Dijikstra(G, r.vs, r.vg);
15 P+ PU{path};

16 Vn € path, M, < M, U {path};
17 end

18 flag < True;
19 | while flug && (P # 0) do

20 for node n € N do

21 score < |M, N P|;

2 NodeScore[n] = (n, score);

23 end

24 Sort NodeScore in descending order by score.
25 flag < False;

26 for node n € NodeScore do

27 if meetcondition(n, nf) then

28 ‘ P+ P\M;; y?f + 1; flag < True;
29 end

30 end

31 end

32 end

B. Two-Stage Service Path Construction Algorithm

When a new request arrives, it is necessary to map the
requested NFs to the underlying PDP, while satisfying all the
service requirements and maintaining low overhead. When
designing a service chain mapping algorithm, not only the
routing path length but also the dynamic condition of the
network should be taken into consideration, since both af-
fect the QoS of flows. Besides, in order to achieve real-
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Algorithm 3: Static Path Construction Algorithm
Input: Topology G = (N, V, E), Request R
Output: NF-Forwarding Graph g and Path Set P

1 Step 1: Construct Forward Graph

2 for i + 1 to |N,.|+ 2 do

3 if v € N;.nodes then

4 g.add(v);

5 for j € N;_i.nodes do
‘ | glille] + dljlle]
7 end

8 end

9 end

10 Step 2: Get Candidate Path Set
u P’ « KSP(g, k *2)
12 for path p € P do

13 if /p.containsLoop() then
14 P.add(p);

15 if Psize==k then

16 | break ;

17 end

18 end

19 end

Algorithm 4: Dynamic Path Selection Algorithm
Input: Candidate Path Set P of Request R
Output: Optimal Path p* of Request R

2 minimum metrics min < MAXIMUM;
3 for path p € P do

4 for edge e € p do

5 if b, < b, or c. > ¢, then
6 if m), < g—: then

7 |y 3

8 end

9 else

10 \ my — MAXIMUM,;
11 end

12 end

13 if m, < min then

14 | min < mp; p* < p;
15 end

16 end
17 Return p*

time service chain mapping, the algorithm must be time-
efficient. To achieve the above goals, we propose the Two-
Stage Service Path Construction (TSPC) Algorithm, which
consists of a Static Path Generation Algorithm and a Dynamic
Path Selection Algorithm.

First, to ensure time-efficiency, the static path generation
algorithm is applied to obtain the top-k-shortest candidate path
set for each service chain demand in advance, which saves the
work of finding the optimal service path of the dynamic algo-
rithm. The static algorithm is only called when the topology
is first constructed or changed. Second, to consider dynamic
network conditions, the dynamic path selection algorithm

evaluates paths from the candidate path set according to the
link load ratio in realtime to ensure load balancing.

1) Static Path Generation Algorithm: The static algorithm
takes the historic demand file and topology information as
inputs. In historic demand file, a request is defined as <Flow
key, NF sequence>. FlexNF uses source-destination IP pairs
to identify a flow, but it can be easily extended to other
flow definition forms. For all the requests defined in historic
demand file, the static path construction algorithm calculates
the top-k shortest paths, as shown in Algorithm 3.

First, an NF forwarding graph based on the topology graph
and SFC request is constructed. The forwarding graph contains
n + 2 stages, where n is the length of service chain. The first
and last stages are the source and destination nodes of the
flow. The remaining nodes in each stage are the switches or
servers with the corresponding NFs installed. The edge of the
forwarding graph is assigned with the distance of the shortest
path between two nodes, which can be obtained by collecting
network topology information. Note that when the nodes of
two adjacent stages are the same, the edge weight is set to 0.

Next, we use the top-k shortest path algorithm, i.e., Yen’s
algorithm [32], to obtain the set of the top-k shortest paths.
Since the path set obtained may contain routing loops, the
algorithm is configured to find the top-2 x k shortest paths to
provide redundant paths. Paths that do not contain loops can
be added to the candidate set, the algorithm stops when the
size of the candidate set reaches k.

2) Dynamic Path Selection Algorithm: When the first
packet of a new request is forwarded to the controller, dynamic
path selection algorithm is activated to select the optimal path
from the candidate sets.

As shown in Algorithm 4, the program will first read
candidate path set generated by the static algorithm. To avoid
network congestion and further improve network performance,
we evaluate the candidate paths in terms of link load usage.
Thus, for each candidate path p € P , restrictions on switch
memory capacity ¢, of each link e and link capacity b. along
the path are first checked to guarantee feasibility. To minimize
the load differences on each link, we define the evaluation
metric as the maximum link bandwidth utilization (i.e., data
rate b, divided by available bandwidth b, of link €) on the path
p. Then, the algorithm selects the path p* with the smallest
metrics after traversing all the paths of the set. The time
complexity of dynamic path selection algorithm is O(n) in
terms of the number of candidate path n, which guarantees
tolerable delay for packets.

VI. P4 IMPLEMENTATION

A network function usually consists of the sophisticated
processing logic and dedicated rule set, which is represented as
control flow logic with match-action tables and flow table en-
tries on programmable switches. The complicated development
process of implementing a complete NF on PDP, especially
when involving stateful operations, requires not only a com-
prehensive understanding of P4 language but also professional
knowledge of programmable hardware devices (e.g., specific
hardware target primitives and register data structure). In order
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to simplify the implementation process of NFs and provide a
unified management interface, we employ two types of models
to represent PDP-based NF implementation, i.e., the stateless
NF model and the stateful NF model. The stateless NF model
leverages match-action tables to execute required actions on
specific flows. The stateful NF model is implemented by the
“state-condition-action” pipeline, and allows important flow
states to be stored and accessed on the data plane.

A. Stateless NF

The model of stateless NF is implemented via a series of
Match-Action Table (MAT) units to impose various processing
logic on specified flows. The available matching fields of a
MAT in a P4 switch include three types of fields: packet
header, standard metadata and user-defined metadata. Actions
are applied to modify the fields of header and metadata, thus
imposing the desired functions on packets, such as modifying
the # field of IP packets or dropping packets.

We use Layer-4 (L4) Load Balancer as an example to
elaborate the Stateless NF model. L4 load balancer scales out
services hosted in cloud datacenters by evenly mapping flows
destined to a service posted at a virtual IP address (VIP) to
a pool of servers with multiple direct IP addresses (DIP). To
complete this task, two sequentially placed MATSs are needed
as in Table III. The first MAT allocates the DIP pool version by
matching VIP addresses. In the second one, flows eventually
obtain randomly selected DIP addresses from a DIP pool using
the hash result of the flow key (e.g., src and dst IP address).

TABLE IIT
NF IMPLEMENTATION EXAMPLES.

Function

Match Field

Action

Flow Classifier

hdr.ipv4.src_ip
hdr.ipv4.dst_ip

Get meta.label
Get meta.bfd_idx

Load Balancer

hdr.ipv4.dst_ip

Get meta.ip_pool_version

hdr.ipv4.dst_ip
meta.ip_pool_version

Get hdr.ipv4.dst_ip

*

Cal. meta.bfd_state=
read register(bfd_register,

meta.bfd_idx)
Cal. meta.bfd_cond. =

Big Flow meta.bfd_state meta.bfd_state>THRESHOLD
Detector 71:0
Cal. meta.bfd_state += 1
meta.bfd_cond.=1 Send to CPU

meta.bfd_cond.=0 Cal. meta.bfd_state += 1

B. Stateful NF

State refers to information generated when processing pre-
vious packets of a flow and can guide the processing of
subsequent packets [33]. The P4 platform provides stateful
units (SRAM) with reading and writing interfaces exposed
to P4 programs. In an NF, a series of stateful units can be
declared, with widths equal to the number of bits of the state
to be stored, and lengths equal to the maximum number of
flows that may pass through the NF.

To ensure correctness, state consistency should be com-
pletely guaranteed. That is, subsequent packets of the same
flow should access stateful units through the same index.
Generally, there are two ways to ensure state consistency.

TABLE IV
COMPARISON BETWEEN HASH AND CONTROLLER ISSUE.

Trace Scheme Collision Rate Memory Used (KB)
Hash-212 33.94% 0.5
Hash-214 10.49% 2.0
univl Hash-216 2.67% 8.0
Hash-218 0.81% 32.0
controller issue 0 1.67
Hash-214 22.30% 2.0
Hash-216 6.27% 8.0
univ2 Hash-218 1.81% 32.0
Hash-220 0.36% 128.0
controller issue 0 2.28

First, we can hash the header fields of packets to get their
NF state indexes. However, if a hash collision occurs, different
flows sharing the same hash result would operate on the same
state, causing damage to correctness-sensitive NFs, such as
the stateful Firewall [34]. In addition, hash collision solutions,
including open addressing [35] and separate chaining [36], are
not hardware-friendly and difficult to implement.

The second way requires the controller to issue the state
index through Flow Classifier function as in Table III. The
controller ought to know the occupations of all the declared
register arrays on each switch. Incoming flows of a switch will
first go through the Flow Classifier and obtain the state index
for all the NFs needed on this switch. The implementation
details of Flow Classifier are elaborated in IV-A. Though a
little extra memory is required for storing the state index, the
possibility of state collision can be effectively eliminated.

We use two traces to compare collision rate and memory
usage for the two schemes. Table IV shows the result. The
first four entries of each trace use a hash function on source
and destination IPs and the fifth one obtains the state index
through flow table entries issued by the controller. According
to Table IV, the hash function method shows poor performance
under both circumstances. Only when a larger space is given to
stateful units (19.1x and 56.1x larger than the memory used
by the controller issue method) can the hash collision rate
reduce to a relatively small range (i.e., < 1%), which is still
unbearable for correctness-sensitive NFs. Meanwhile, for the
controller-issue solution, we allocate stateful units with only
10,000 register cells, which is more than enough for these two
traces. The extra memory space used for storing the state index
is positively related to the number of the flows. Thus, we use
flow entries to issue the state index.

To better illustrate the implementation model of stateful NF,
we use the Big Flow Detector (BFD) as an example. As shown
in Table III, the BFD checks whether the recorded flow size
exceeds a specific threshold. If so, it reports the corresponding
flow to the controller. To simulate the logic of BFD in P4
switches, we use three types of tables, including state table,
condition table and action table.

State table is responsible for obtaining the stored state
of the flow. Each NF instance has its own stateful units as
registers in the programmable switch. SRAM resource for
registers is allocated with pre-declared width and length when
deployed. The state in BFD is the set of flow sizes for all
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Branch State Per-Flow State  Constant

condition

internal_ip = ip.src |
tinternal_port = tcp.sport;
t top.sport = port

+ ip.src = PUBLIC_IP ;
in_port=INTERNAL
tep.sport = port
ip.src = PUBLIC_IP

in_port=EXTERNAL|
drop

in_port=EXTERNAL
ip.dst = internal_ip
tcp.dport = internal_port

Dynamic NAT

Fig. 7. Workflow of Dynamic NAT

flows. After fetching the index of state in the Flow Classifier,
the packet reads and preserves state in metadata for further
operations in State Table. The state fetching is implemented
in the default action of State Table, requiring no extra entries.

Condition table directly operates on the state to obtain
the transition condition information. By conducting predefined
calculations with the state in metadata and the given param-
eters, we can obtain the transition condition result which is
used to determine the next operation. In the BFD, if the state
is larger than the THRESHOLD, the condition is set to 1,
otherwise 0. The number of entries in the condition table is
equal to the number of possible state transitions of each NF.

Action table is used to apply actions on both packet and
state based on the condition variable. State action allows
modifying and rewriting the state back to the register array,
so that it can be reused by the next packet. Packet actions
include modifying packet header and redirecting packet path,
such as dropping and sending to CPU. In the BFD example,
there are two different actions. When condition is O (which
indicates that the flow size is smaller than threshold), it will
increment the counter. If condition is set to 1, it represents
that a transition of flow state happens, and the packet should
be sent to CPU for notification.

C. Hardware-applicable Modification

Although the NF implementation model conforms to the
P4 language grammar and P4 abstract forwarding model, the
code implemented based on this model cannot be directly
applied to the Tofino switch [16] due to the special design
of the hardware switch chip. Therefore, several modifications
are made for the real deployment in hardware switches.

1) Limited state accesses. Multiple accesses of the same
state in one round of pipeline processing in the hardware
switch are not permitted. However, the abstraction of the
stateful NF as a finite state machine includes the data path with
a loop of state reading — writing, unable to be implemented
in hardware. Therefore, we aggregate the actions of each
state into a table, and select the corresponding state actions
according to the condition and state information of the flow.
Fig.7 shows the state access loop through the finite state
machine of Dynamic NAT, which dynamically assigns a new
source port number and a common global IP address to a
new connection and performs the corresponding packet header

R internal_port =| : |
meta.tcp_sport
internal_port

cp.sport =
meta.port
ip.src =

; - :
IN, 0 meta.por= i [ port= '_, internal_ip
* |1} |meta.port > =ip.src
N, 1 +=1 meta.port]
ip.dst=
internal i

EX 1 —
EX, 0

Status
<ingress_port,
state>

-

packets

v

Fig. 8. Workflow of Hardware-applicable Dynamic NAT

rewriting. In Dynamic NAT, the current number of ports to be
allocated is firstly read for each packet and is used along with
the in_port information to select corresponding actions to take.
This process leads to a state access loop, as marked by the
red alert arrow in Fig.7. Therefore, we aggregate the actions
of each state into a table, and select the corresponding state
actions according to the condition and state information of the
flow. As shown in Fig. 8, the modified version of Dynamic
NAT fits the hardware switches well while maintaining the
original function.

2) Stage allocation. When different MATs with data depen-
dencies are allocated to the same stage, the execution sequence
will be interfered. Thus, hardware switch programming needs
to assign a pipeline stage to each MAT.

3) Limited capacity of registers. The length of a register can
only be 8, 16, or 32 bits. Thus, a 48-bit MAC address can only
be stored in two registers. Similarly, in the Per Flow Policer
and SYN Flood Detection, we also adopt two registers to
store 48-bit timestamps, thereby prolonging the overflow time
of the function. When the 48-bit state encounters subtraction
calculation, the result is obtained by combing the results of
calculating the registers with higher and lower bits separately.

VII. EVALUATION

We implement FlexNF on both software (BMv2) and hard-
ware (Tofino chip) programmable data plane. In this section,
we evaluate the performance of FlexNF.

A. Numerical Analysis of FlexNF on BMv2

1) Experiment Setup: To evaluate the flexibility and scala-
bility of the NF Selection Framework in FlexNF, we build a
software experiment environment using BMv2 switches with
an ONOS controller running the SP-aware NF Placement
Algorithm and the Two-Stage Service Path Construction Al-
gorithm. In the software experiment environments, we deploy
15 types of network functions on each service BMv2 switch,
details are shown in Table V. We choose six topologies from
SDNIib [23] for experiment, whose information is shown in
Table VI. The o in SNPA is set to 10 based on the actual
deployment tests. We randomly construct some real service
chains based on implemented network functions, and randomly
assign them to different pairs of source and destination nodes
in the experimental topologies, while ensuring the number
of flows to request each service chain to be the same. Flow
completion time (FCT) and link load information are collected
during evaluation through ONOS APIs. They are used as
performance metrics to evaluate the scalability and efficiency
of our scheme.
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TABLE V

NF IMPLEMENTATION PARADIGMS.

NF Description
Firewall (FW) Blocks specific traffic based on security rules.
SNAT Translates the private IP to the public IP.
DNAT Translates the public IP to the private IP.

Load Balancer

Evenly distributes traffic across some servers by map-
ping the virtual IP address to direct IP addresses.

ARP Proxy

Answers the Address Resolution Protocol (ARP)
queries intended for other network devices.

UDP Stateful
Firewall

Tracks the states of UDP connections and only allows
flows in one direction if a corresponding flow in the
opposite direction was first seen.

Port Knocking

Allows communication only if a sequence of packets

Firewall to a sequence of predefined ordered ports is received.
TCP Stateful Keeps track of the states of active TCP connections
Firewall and only allows the legal ones.

Per-flow policer  Traffic policer based on per-flow sliding windows.
Big Flow Keeps track of the number of packets of flows and
Detector alerts the controller if a given threshold is exceeded.
Sggl‘g?(?: Identifies hosts generating more traffic than expected.

Dynamic NAT

Assigns a port number to new connections and
rewrites the corresponding packet header.

Super Spreader
Detection-TCP

Monitors the number of TCP connections initiated by
each host.

ARP Spoofing

Keeps the MAC-IP mapping state and detects if one

Detection MAC is mapped to more than one IPs.
DNS Reflection  Tracks if a host has sent a DNS request and filters
Defense the replies without a recorded request.
TABLE VI
TOPOLOGIES INFORMATION.

Topology abilene  geant france norway brain  germany
No. of nodes 12 22 25 27 161 50
No. of links 22 36 45 51 166 88

We implement the control plane algorithms based on the
ONOS controller with about 1500 LoC in Java. The control
plane generates NF deployment policies through the SP-aware
NF Placement Algorithm. At runtime, the control plane will
intercept the PacketIn message from a specific interface, and
then construct an optimal service path for the incoming flow
based on the Two-Stage Service Path Construction Algorithm.
After that, the controller installs routing and NF entries, and
sends back the first packet that triggers the Packetln message
to the data plane.

2) Evaluation on SP-aware NF Placement Algorithm:
Benchmark. To verify the effectiveness of the greedy algo-
rithm, we set up three schemes for comparison: 1) Shortest
Path (SP), i.e., all requests are completed by the shortest
routes, which stands for the theoretical optimal result; 2)
Maximum Degree (MD), i.e., service nodes are selected in
descending order of node degrees; and 3) Genetic Algorithm
(GA) [37], i.e., GA is applied to solve SP-aware NF Placement
Problem > We randomly generate 10,000 requests on Abilene,
and then calculate the average route length of all requests and

2The objective function (1) can not be expressed explicitly by the variable
Y., we cannot directly use the ILP/MILP solver to solve the problem, so we
use GA for comparison.

algorithm execution time as evaluation metrics.

The route length results are shown in Fig. 9(a), we set
a time limit to control the search time of the GA algo-
rithm. GA(Time=10s) and GA(Time=1000s) represent the GA
algorithm running for 10s and 1000s, respectively. Greedy
(Ours) stands for Algorithm 2. As the number of service
nodes increases, the average requests route length of Greedy
is more closer to the average route length of SP than MD
and GA. When the number of service nodes is 6, Greedy can
complete the request within an average of 3.6 hops, while
the results of MD, GA(Time=10s) and GA(Time=1000s) are
3.8 hops, 4 hops and 3.7 hops, respectively. Fig. 9(b) shows
the execution time results, the execution time of MD and
Greedy are around 0.0175s and 3.6s, respectively. However,
GA needs to consume 1000s to achieve good performance,
which is still inferior to the performance of Greedy(ours). SP
represents the theoretical optimal result, we can find that the
result of Greedy(ours) is closer to the optimal result than other
schemes. In summary, Greedy(ours) can achieve the shortest
route length while ensuring a relatively short execution time.

To evaluate the scalability of FlexNF, we also conduct
experiments on different topologies from SDNIib [23]. We
compare the average route lengths on different topologies
when deploying six service nodes. The results are shown
in Fig. 10. Our proposed Greedy algorithm beats the GA
algorithm and the max degree algorithm on all six topologies.
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3) FCT and Throughput: Benchmark. We compare NSF
against two other benchmarks with different deployment gran-
ularity for evaluation. The first benchmark deploys at NF
granularity, that is, only a single NF is deployed on each
programmable switch. In this solution, the service chain path is
constructed by traversing all function nodes where the required
NFs are located. To solve the potential routing loop problem,
we implement the multi-level default path routing solution that
combines SFC Table, NF Table, and Flow Table on the P4
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FlexNF uses the NF Selection Framework on PDP for flexbile service chaining.
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switch, as proposed by SAFE-ME [4]. The second benchmark
deploys at SFC granularity, that is, an entire service chain
is installed on each switch. For each newly-arrived flow, the
controller calculates a loop-free routing path passing through
the service chain nodes.

We use six nodes in Abilene as the cornerstone to deploy
NFs on the switches with NF-Granularity Scheme (a single
NF in a switch), SFC-Granularity Scheme (a complete ser-
vice chain in a switch) and NSF Scheme (the NF Selection
Framework in FlexNF, NF placement strategy is generated
by SP-aware NF Placement Algorithm). To simulate different
intensities of link load, we randomly assign the 132 possible
service chain requests with different flow sizes (at a fixed rate),
and repeat the experiment for five times.

In Fig. 11(a), for the average FCT, we observe that at
100% load level, deployment with NF Selection Framework
significantly outperforms other solutions by 12.9% and 36.9%.
The performance advantage is also obvious in Fig. 11(b)
and Fig. 11(c). Although the SFC-granularity deployment
yields a slightly smaller latency gap, it has obvious scalability
shortcomings. That is, the number of service chains supported

with SFC-granularity deployment is restricted by the number
of functional nodes. On the contrary, the NSF scheme theo-
retically supports all possible service chain requirements.

We also evaluate these schemes by link load information
collected every 100ms. We compare the load of the heaviest
link in each scheme in Fig. 12(a) and the distribution of
the average load of all links in Fig. 12(b). Benefiting from
jointly considering the shortest routing paths and the load
balancing when constructing service chains, FlexNF performs
the best among the three and enjoys the lightest link loads.
NF-Granularity Scheme shows the heaviest loads due to the
longest routing paths. By placing the whole service chain on
one switch, SFC-Granularity achieves lighter link loads than
NF-Granularity due to the shorter route lengths. However, its
link load is still higher than that of FlexNF because of its poor
NF deployment flexibility.

To evaluate the scalability of FlexNF, we also conduct
experiments on different topologies from SDNIib [23]. We
compared the average flow completion time on different
topologies under a link load of 100%. The results are shown
in Fig. 13. The average flow completion time of FlexNF on
six topologies is consistently shorter than that of SFC-G and
NF-G. For example, FlexNF outperforms other solutions by
11.1% and 36.5% on Germany topology.

B. Performance of FlexNF on PDP

1) Experiment Setup: On the Tofino ASIC target, we
implement the same NFs as the software experiment in
Section VII-A. Due to the limitation of ASIC on stateful
actions, we slightly modify the stateful NFs by merging read,
comparison and state modification into a single register action.
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2) NF Selection Framework Evaluation: To evaluate the
overhead of the NSF in different scenarios, we conduct exper-
iments on different packet rates, different numbers of tables,
and different packet sizes with/without the NSF. As shown
in Fig. 14, under different packet rates, the delay gap (with
or without NSF) is 12ns on average, which only adds 1.6%
extra overhead compared to directly installed NFs without
NSF, while achieving similar throughput. Fig. 15(a) shows that
under 40Gbps traffic, the two schemes tend to have small jitters
when using different numbers of tables in the pipeline, and the
maximum difference in delay is 13ns. Fig. 15(b) shows that
with a fixed sending rate and number of tables, the latency of
the two schemes increases as the packet size increases, but the
gap between them reduces to only 1 ns with 512B packet size.
In summary, we observe that the cost of the NSF is negligible.

3) Resubmit Evaluation: Fig. 16 shows the impact of the
two pipeline re-enter methods on traffic performance (e.g.,
forwarding delay and throughput). Compared with recircu-
lation, resubmit function has a much smaller impact on the
forwarding delay (i.e., an average delay of 100ns) at different
data packet sending rates, as shown in Fig. 16(a). Moreover,
we can observe from Fig. 16(c) that, although resubmitting
traffic would cause the weighted-average forwarding delay to
increase, the maximum increment is no more than 40ns. As for
the recirculation test in Fig. 16(b), when the recirculate time
does not exceed 3, each additional iteration of recirculate adds
an additional delay of about 530ns. Otherwise, forwarding
delay increases exponentially with hugely-compromised per-
formance and massive packet loss. Nevertheless, the influence
of one recirculation iteration on latency is still about 100ns
smaller than that of forwarding one more network hop. As
such, we expect to utilize recirculate mechanism for more
flexibility when more than one iteration is needed.

4) Network Functions Switching Evaluation: We test the
performance of the PFOD scheme for switching NFs on the
hardware P4 switch. The benchmark is the traditional program
switching on the P4 switch. The process is automatically
implemented through scripts. We switch the installed NF at
different intervals, perform this operation 20 times, and obtain
the results as shown in Fig. 17.

As shown in Fig. 17(a) and Fig. 17(b), with the interval
time of NF adjusting increasing, the throughput of the PFOD
method gradually increases to 98.684Gbps when adjusted once
in 60s, which almost reaches the normal throughput, and the
packet loss rate gradually decreases to 0.007%. However, the
program switching method results in a reduction in throughput

to 96.644Mbps and a packet loss rate of 8.276%. Moreover,
as shown in Fig. 18, the stop of the device due to program
switching causes a few seconds of zero throughput and es-
calated packet loss rate, while the PFOD method is able to
maintain stable performance.

5) Overhead of the Deployment of FlexNF: In this section,
we test the hardware resource overheads of FlexNF deploy-
ment on the hardware P4 switch.

TABLE VII
HARDWARE RESOURCE CONSUMPTION OF FLEXNF COMPARED TO THE
BASELINE SWITCH.P4.

Multilevel

Resource Switch.p4  Labeling Re-enter Mechanism Combined
SRAM 29.58% 5% 2.5% 32.08%
Stateful ALU 14.58% 0% 0% 14.58%
VLIW Actions 36.72% 3.47% 5.21% 45.40%
TCAM 32.29% 0% 0% 32.29%
Hash Bits 34.74% 4.81% 4.81% 44.36%
Ternary Xbar 43.18% 0% 0% 43.18%
Exact Xbar 29.36% 12.85% 3.61% 45.82%

First, we evaluate the total hardware resource consumption
caused by different components (i.e., Labeling and Multilevel
Re-enter Mechanism) of FlexNF compared to the baseline
Switch.p4 [38]. Switch.p4 is a foundational P4 program that
incorporates a range of essential networking functionalities
suitable for a standard data center switch [39]. As shown in
Table VII, FlexNF only introduces 7.5% SRAM overhead,
8.68% VLIW Actions, 9.62% hash bits and 16.46% Exact
Xbar. FlexNF introduces little hardware resource overhead and
can be deployed lightweightly on hardware switches.

TABLE VIII
TABLE USAGE FOR DIFFERENT PROGRAMS.

NFs Native P4  Hyper4  HyperVDP  FlexNF
L2 Forward 2 13 5 4
Firewall 3 22 8 5
Router 4 28 16 6
ARP Proxy 4 48 10 6

Second, we implement several network functions on hard-
ware switches to compare overheads of FlexNF with Hyper4
and HyperVDP. Table VIII shows the number of tables used
in Hyper4, HyperVDP and FlexNF. Compared with native P4
switch, FlexNF only needs to introduce two additional tables,
one for Flow Classifier (i.e., get the service label) and another
for Multilevel Re-enter Mechanism (i.e., resubmit/recirculate).
Generally, FlexNF reduces 2x to 9x of table usage comparing
with Hyper4 and reduces 1x to 2x of table usage comparing
with HyperVDP. We also compare TCAM and SRAM usage
of FlexNF with Hyper4 and HyperVDP. Fig. 19(a) shows
that HyperVDP and Hyper4 introduce an additional TCAM
overhead of 5%-15% and 2%-5%, respectively, while FlexNF
hardly introduces additional TCAM overhead. Fig. 19(b)
shows that SRAM overhead introduced by FlexNF is less than
that of HyperVDP and Hyper4. In summary, FlexNF has lower
memory overhead than other network virtualization solutions.
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VIII. RELATED WORK

Existing works on hardware offloading are devoted to the
following two aspects: 1) implementing specific NFs on PDP
with complete function and high-performance service; and
2) proposing new paradigms for NFs on various data plane
platforms (including OpenFlow [40], FPGA [34] and the
combination of P4 switch and x86 server [10]), focusing
on state storage in limited memory space and the problem
of state consistency. OpenState [40] was the first to im-
plement advanced stateful applications by extending match-
action paradigm of Open Flow [40]. However, OpenState does
not mention the rationale to support and organize multiple
applications. Besides, without the extension of OpenState,
OpenFlow itself provides limited support for stateful operation
and is not able to keep states inside the data plane. FPGA-
based SmartNIC is another available option to offload VNFs
[34], [41]-[43]. Microsoft proposes ClickNP [42], which de-
ploys FPGA-based SmartNICs in their datacenters to save
CPU usage and reduce traffic transmitted over server’s PCle
bus, thus improving NFs’ packet processing latency by more
than an order of magnitude [34]. However, implementing a
complete NF on top of a SmartNIC requires a professional

(c) Latency vs. % of resubmit traffic.
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Fig. 19. TCAM and SRAM usage of different network functions.

understanding of the hardware, making it difficult to introduce
new features on existing devices. As a target-independent
domain-specific language, P4 offers great programmability by
allowing network engineers to customize their protocols using
a descriptive programming language. P4 maintains a good
balance between expressiveness and simplicity. Meanwhile,
P4 allows to maintain information in the data plane during
runtime based on its register data structure, and thus has the
potential to offload advanced network functions.

To solve the service chaining problem on the PDP, P4Visor
[44] merges multiple service chains in a single switch to en-
hance the service chain scalability. However, PDP still cannot
accommodate the service chains that have not been installed
in advance. Hyper4 [24] and HyperVDP [25] propose to
virtualize the PDP and enable runtime reconfiguration. How-
ever, these solutions inevitably cause switch resource waste.
ClickP4 [26] offers the potential of dynamically combining
features on the PDP, though it still lacks a framework to solve
the actual service chaining problem. Some works [45] solve
the service chaining problem on the algorithmic aspect by
establishing an Integer Linear Programming model regarding
different targets. Hyper [43] first proposes a service chaining
algorithm on the PDP considering the QoS requirements.
However, it only considered service performance, but not the
stability of network performance and unfortunately introduced
high execution time.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose FlexNF, a flexible service chain
composition framework based on the PDP. First, we design
the NF Selection Framework to support the service selection
of flows at runtime and enable fine-grained NF orchestration.
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Second, we propose the Per-Flow On-Demand (PFOD) ser-
vicing mechanism to achieve NF runtime switching. In PFOD,
one MAT with multiple mixed NFs installed works as different
NFs for different flows. Third, to provide on-path service,
we propose the SP-aware NF Placement Algorithm and the
Two-Stage Service Path Construction Algorithm to ensure the
traffic QoS. Evaluation results show that our system not only
outperforms solutions with fixed-node deployment schemes in
both traffic QoS and request acceptance ratio, but also shows
higher throughput and low packet loss rate. In future work, we
will further enhance the SP-aware NF Placement Algorithm
and the Two-Stage Service Path Construction Algorithm to
achieve differentiated path selection by considering the QoS
requirements of flows. For example, we can assign longer
paths for flows with lower QoS requirements to spare space
for more latency-sensitive flows.
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