

## I Know Your Intent: Graph-Enhanced Intent-aware User Device Interaction Prediction via Contrastive Learning

Jingyu Xiao\*, Qingsong Zou\*, Qing Li ‡, Dan Zhao, Kang Li, Zixuan Weng, Ruoyu Li, Yong Jiang







- Internet of Things (IoT) devices have been increasingly involved in smart home
- There are many User Device Interaction (UDI) sequences in people daily life.









- User Device Interaction (UDI) prediction is necessary for smart homes
  - Behavior Recommendation
  - Abnormal Behavior Identification







- User Device Interaction (UDI) prediction in smart homes
  - Given a behavior sequence  $s=[b_1, b_2, ..., b_n]$ , where b=[t, d, c, i] consists of time t, device d, device control c and intent i. For example,  $b=[2022-10-15\ 11:30$ , oven, oven: switch, cooking] describes the behavior turn on the oven at 11:30 on 2022-10-15, with the intent of cooking.
  - The UDI prediction aims at predicting next behavior  $b_{n+1}$ .







- **Routine** contains people's behavior correlations
  - Existence of noise behaviors between the routine behaviors causes the model to learn false correlations between noisy behaviors and routine behaviors which cooccur in the same sequence.







• Intent determines the user behaviors:

- There are multiple intents (e.g., laundry, cooking) in the behavior sequence.
- There are complex transitions between different intents.







• Multi-level Periodicity reflects the behavior patterns:

• There are different periodicities in the behavior sequences, such as month-level, week-level, day-level and so on.







- We propose SmartUDI:
  - A novel approach for accurate UDI prediction.
- Idea #1: Message-Passing-based Routine Extraction
  - Extract Routine via message passing and learn correct correlations via contrastive learning
- Idea #2: Intent-aware Capsule Graph Attention Network
  - View Intents as capsules and multiple intents by capsule network.
  - Leverage relational gated GAT to capture the transitions between different behaviors.
- Idea #3: Cluster-based Historical Attention Mechanism
  - Model correlation between current sequence and nearest historical sequences by attention mechanism to capture Multi-level Periodicity.









• Construct the Behavior Graph: The weights in the graph represent the number of co-occurrences of behaviors.

2023 CANCUN.

- Initial the routine label based on K-clique algorithm.
- Update the routine label by message passing.



## **6** Intent-aware Graph Attention Network

- Time2Vec for Time Embedding.
- Relational Gated Graph Attention Network for Action Embedding.
- Self-attention and capsule network are employed to model multiple intents.

2023 CANCUN.

![](_page_10_Figure_4.jpeg)

## **7** Cluster-based Historical Attention Mechanism

2023 CANCUN

- Cluster sequences by K-means.
- Summarize the nearest history sequence vector  $[C_1, C_2, C_3, \dots C_{t-1}]$  into p to capture the multi-level periodicity.

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

• The similarity between two behavior representations

$$\operatorname{sim}\left(\mathbf{h}_{p},\mathbf{h}_{q}\right)=\mathbf{h}_{p}^{\top}\mathbf{h}_{q}/\left\|\mathbf{h}_{p}\right\|\left\|\mathbf{h}_{q}\right\|$$

• Contrastive loss function

$$\mathcal{L}(\mathbf{h}_{i}) = -\log \frac{\sum_{\mathbf{h}_{j} \in pos(\mathbf{h}_{i}), \mathbf{h}_{j} \neq \mathbf{h}_{i}} \exp\left(\sin\left(\mathbf{h}_{i}, \mathbf{h}_{j}\right) / \tau\right)}{\sum_{\mathbf{h}_{k} \in neg(\mathbf{h}_{i}), \mathbf{h}_{k} \neq \mathbf{h}_{i}} \exp\left(\sin\left(\mathbf{h}_{i}, \mathbf{h}_{k}\right) / \tau\right)} \qquad \qquad \mathcal{L}_{CL} = \frac{1}{\|\mathcal{S}\|} \sum_{s \in S} \sum_{\mathbf{h}_{i} \in s} \mathcal{L}(\mathbf{h}_{i})$$

• UDI prediction loss function

$$\mathcal{L}_{UDI}(X, \mathbf{Y}) = -\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \mathbf{y}_s \log \hat{\mathbf{y}}_s$$

• Total loss function

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{UDI}} + \lambda \mathcal{L}_{\text{CL}}$$

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

- We use four real-world datasets to evaluate SmartUDI
  - US/SP/FR from public dataset, AN collected by ourselves.
  - Datasets are split into training/validation/testing with a ratio of 7:1:2.
  - All sequence instances are of length 10, and we use the first 9 behaviors as input to predict the next behavior.
  - Eight intents: entertainment, shower, sleep/getup, leave/return, study, cooking, cleaning, others.

| Name | Time period (Y-M-D)   | Sizes  | # Devices | # Device controls |
|------|-----------------------|--------|-----------|-------------------|
| US   | 2022-02-22~2022-03-21 | 67,882 | 40        | 268               |
| SP   | 2022-02-28~2022-03-30 | 15,665 | 34        | 234               |
| FR   | 2022-02-27~2022-03-25 | 4,423  | 33        | 222               |
| AN   | 2022-07-31~2022-08-31 | 1,765  | 36        | 141               |

**10 Baselines and Evaluation Metrics** 

- Baselines: we compare SmartUDI with 11 competitors
  - Traditional Models: HMM and FPMC
  - RNN-based Models: LSTM, CA-RNN, SIAR and DeepMove
  - CNN-based Models: Casers
  - GNN-based Models: SR-GNN
  - Transformer-based Models: SASRec, SmartSense and DeepUDI
- Evaluation Metrics:
  - Acc@K: Top-K accuracy

Acc@K = 
$$\frac{|\{s \in S : p(s) \in P_K(s)\}|}{|S|}$$

• Macro-F1: Macro averaging of F1 score

Macro-F1 = 
$$\frac{\sum_{c} F1_{c}}{|C|}$$

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

- **RQ1 (Performance).** Compared with other methods, can SmartUDI predict user device interaction more accurately?
- **RQ2** (Ablation study). How does each main component of SmartUDI affects the performance of UDI prediction?
- RQ3 (Parameter study). How do key parameters affect the SmartUDI?
- RQ4 (Interpretability study). Can SmartUDI give a reasonable explanation?
- **RQ5** (Embedding space analysis). Does SmartUDI successfully learn useful embedding vectors of behaviors and correct correlations between behaviors?

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

- **RQ1:**Compared with other methods, can SmartUDI predict user device interaction more accurately?
- A1: SmartUDI outperforms all competitors.

| Dataset | Metric   | HMM    | FPMC   | LSTM   | CARNN  | Caser  | DeepMove | SIAR   | SRGNN  | SASRec | SmartSense | DeepUDI       | SmartUDI |
|---------|----------|--------|--------|--------|--------|--------|----------|--------|--------|--------|------------|---------------|----------|
| AN      | Acc@1    | 0.6099 | 0.6557 | 0.7062 | 0.7026 | 0.7054 | 0.7116   | 0.7238 | 0.9245 | 0.9325 | 0.9407     | 0.9784        | 0.9805   |
|         | Acc@3    | 0.7501 | 0.7959 | 0.7843 | 0.8302 | 0.8569 | 0.9272   | 0.9354 | 0.9864 | 0.9665 | 0.9731     | 0.9865        | 0.9874   |
|         | Acc@5    | 0.7714 | 0.7902 | 0.8328 | 0.9003 | 0.9273 | 0.9542   | 0.9645 | 0.9872 | 0.9765 | 0.9838     | 0.9882        | 0.9892   |
|         | Macro-F1 | 0.2439 | 0.2845 | 0.3759 | 0.4159 | 0.4467 | 0.5027   | 0.5259 | 0.7368 | 0.7432 | 0.7519     | 0.7997        | 0.8966   |
| FR      | Acc@1    | 0.6536 | 0.6814 | 0.6962 | 0.7893 | 0.7742 | 0.7762   | 0.7796 | 0.7819 | 0.7821 | 0.7923     | 0.8144        | 0.8145   |
|         | Acc@3    | 0.7813 | 0.8271 | 0.8011 | 0.9148 | 0.9201 | 0.9221   | 0.9120 | 0.9197 | 0.9204 | 0.9232     | 0.9237        | 0.9238   |
|         | Acc@5    | 0.8242 | 0.8508 | 0.8565 | 0.9425 | 0.9414 | 0.9446   | 0.9420 | 0.9435 | 0.9362 | 0.9379     | 0.9511        | 0.9512   |
|         | Macro-F1 | 0.1127 | 0.1279 | 0.1302 | 0.2102 | 0.2158 | 0.2288   | 0.2312 | 0.2482 | 0.2473 | 0.2603     | 0.3425        | 0.3837   |
| SP      | Acc@1    | 0.6315 | 0.6964 | 0.7517 | 0.7853 | 0.7721 | 0.7756   | 0.7802 | 0.7815 | 0.7821 | 0.7921     | 0.7923        | 0.7930   |
|         | Acc@3    | 0.7863 | 0.7916 | 0.8864 | 0.8915 | 0.9045 | 0.9125   | 0.9217 | 0.9303 | 0.9321 | 0.9342     | 0.9375        | 0.9427   |
|         | Acc@5    | 0.8361 | 0.8605 | 0.9346 | 0.9117 | 0.9273 | 0.9521   | 0.9597 | 0.9603 | 0.9560 | 0.9511     | 0.9642        | 0.9671   |
|         | Macro-F1 | 0.1382 | 0.1586 | 0.1756 | 0.1745 | 0.1927 | 0.2159   | 0.2176 | 0.2239 | 0.2254 | 0.2244     | 0.3112        | 0.3328   |
| US      | Acc@1    | 0.3327 | 0.3543 | 0.4286 | 0.5212 | 0.5378 | 0.5527   | 0.5633 | 0.5784 | 0.5826 | 0.5935     | 0.6056        | 0.6321   |
|         | Acc@3    | 0.6881 | 0.6992 | 0.8209 | 0.8577 | 0.8632 | 0.8844   | 0.8902 | 0.8955 | 0.8972 | 0.9056     | <u>0.9123</u> | 0.9058   |
|         | Acc@5    | 0.7258 | 0.7712 | 0.8929 | 0.9135 | 0.9266 | 0.9418   | 0.9432 | 0.9463 | 0.9320 | 0.9489     | 0.9521        | 0.9538   |
|         | Macro-F1 | 0.1069 | 0.1123 | 0.1265 | 0.1396 | 0.1576 | 0.2388   | 0.2397 | 0.2431 | 0.2433 | 0.2451     | 0.3538        | 0.3742   |

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

- **RQ2**:How does each main component of SmartUDI affects the performance?
- A2: All three components (MPRE, ICGAT and CHAM) of SmartUDI are contributive for UDI prediction. Cluster improve the performance and efficiency of historical attention mechanism.

![](_page_17_Figure_4.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

- **RQ3**:How do key parameters affect the SmartUDI?
- A3: The best parameter combination: #of layers of RGGAT=2, Embedding Dimension=50, # of History Sequence=15, Batch Size=512.

![](_page_18_Figure_4.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

- **RQ4:**Can SmartUDI give a reasonable explanation?
- A4: SmartUDI can interpret the results based on routine extraction results, intent capsule weight.

![](_page_19_Figure_4.jpeg)

Fig. 8. (a) Routine extraction results, (b) capsule weight and (c) top 5 prediction results of the example.

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

- **RQ4:**Can SmartUDI give a reasonable explanation?
- A4: SmartUDI can interpret the results based on historical attention score.

![](_page_20_Figure_4.jpeg)

Fig. 9. Top 5 most similar historical sequences, time span, next behavior and historical attention score.

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

- **RQ5:** Does SmartUDI successfully learn useful embedding vectors of behaviors and correct correlations between behaviors?
- A5: After applying contrastive learning, SmartUDI can learn the correlations between device.

![](_page_21_Picture_4.jpeg)

(a) Device embedding w/o CL. (b) Device embedding with CL.

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

- We propose SmartUDI for accurate UDI prediction.
- Our main contributions are summarized as follows:
  - Idea #1: Message-Passing-based Routine Extraction
  - Idea #2: Intent-aware Gated Graph Attention Network
  - Idea #3: Cluster-based Historical Attention Mechanism
- SmartUDI consistently outperforms state-of-the-art baselines and also offers highly interpretable results.

## Thank you!

![](_page_23_Picture_1.jpeg)

- Speaker: Jingyu Xiao
- Homepage: <u>https://whalexiao.github.io/</u>
- Email: jy-xiao21@mails.tsinghua.edu.cn

![](_page_23_Picture_5.jpeg)