
Drift-Bottle: A Lightweight and Distributed Approach to Failure
Localization in General Networks

Xudong Zuo
Tsinghua Shenzhen International

Graduate School
Peng Cheng Laboratory

Shenzhen, China
zuoxd20@mails.tsinghua.edu.cn

Qing Li∗
Peng Cheng Laboratory

Shenzhen, China
liq@pcl.ac.cn

Jingyu Xiao
Tsinghua Shenzhen International

Graduate School
Peng Cheng Laboratory

Shenzhen, China
jy-xiao21@mails.tsinghua.edu.cn

Dan Zhao
Peng Cheng Laboratory

Shenzhen, China
zhaod01@pcl.ac.cn

Jiang Yong
Tsinghua Shenzhen International

Graduate School
Peng Cheng Laboratory

Shenzhen, China
jiangy@sz.tsinghua.edu.cn

ABSTRACT
Network failure severely impairs network performance, affecting
latency and throughput of data transmission. Existing failure lo-
calization solutions for general networks face problems such as
difficulty in acquiring data from end hosts, need for extra infrastruc-
ture, and excessive resource consumption. Meanwhile, solutions
designed for data center networks are hard to apply in general
networks, as they usually rely on the topology regularity of DCNs.
In this paper, we propose Drift-Bottle, a lightweight and distributed
approach to failure localization in general networks. In Drift-Bottle,
each switch judges the status of flows and makes a local inference
for suspicious links. We design a distributed localization scheme
where each normal packet is used as a “drift-bottle” that carries
a “letter”, i.e., a lightweight inference header, while traversing the
network. Each switch along the path updates the inference header
by aggregating it with its local inference. Whenever the inference is
evident enough to identify the culprit links of failures, a warning is
sent to the operator immediately. Drift-Bottle implements its func-
tion mainly on the data plane of programmable switches and thus
reduce the overhead brought to switches significantly. Evaluation
based on simulation on different topologies demonstrates that Drift-
Bottle provides fast, precise and lightweight failure localization to
operators of general networks.

CCS CONCEPTS
• Networks→ Network monitoring.

∗Corresponding Author: Qing Li

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’22, December 6–9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9508-3/22/12. . . $15.00
https://doi.org/10.1145/3555050.3569137

KEYWORDS
Failure Localization, General Network, Programmable Switch, In-
network Intelligence

ACM Reference Format:
Xudong Zuo, Qing Li, Jingyu Xiao, Dan Zhao, and Jiang Yong. 2022. Drift-
Bottle: A Lightweight and Distributed Approach to Failure Localization
in General Networks. In The 18th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT ’22), December 6–9, 2022,
Roma, Italy. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3555050.3569137

1 INTRODUCTION
Are our networks robust enough? The short answer may be no. In
the past decade, modern networks are growing at an incredible rate
in both scale and complexity. To deliver a vast variety of applications
and contents to millions of users in a fast and reliable way, ICPs and
ISPs have upgraded their network infrastructures with thousands
of servers and switches. However, the booming scale of networks
inevitably harms its robustness while facing various failures. A
production networkmay suffer fromhundreds of failures per annual
[24]. Failure of several switches can cause an immediate packet
blackhole which can last for hours [7].

Link failures and corruptions are among the most common and
frequent failures in networks. A failed link will drop all packets
on it, whereas a corrupted link will drop packets at a considerable
rate. Packet losses caused by link failures and corruptions severely
impair network performance, affecting both latency and through-
put of data transmissions. Therefore, it is essential for network
operators to detect and localize the failed or corrupted links to
mitigate the damage. Many monitoring tools have been designed
to find the culprits of packet loss caused by link failure/corruptions
in general networks. However, failure detection and localization in
general networks is not easy. Existing solutions fall into two main
categories: host-based solutions and switch-based solutions.

Host-based solutions rely on information collected from end
hosts to localize failures. Network tomography [1, 5, 6, 18] gathers
status (e.g., retransmission packets and surviving rates of packets)
and path information of data flows from end hosts together, which

337

https://doi.org/10.1145/3555050.3569137
https://doi.org/10.1145/3555050.3569137
https://doi.org/10.1145/3555050.3569137

CoNEXT ’22, December 6–9, 2022, Roma, Italy Xudong Zuo, Qing Li, Jingyu Xiao, Dan Zhao, and Jiang Yong

are further analyzed using linear algebra or stochastic approaches
to pinpoint failures. However, ISP network operators may not have
the authority to visit users’ end hosts. The heterogeneity of host
models (e.g., PC, mobile phone and IoT device) also brings additional
complexity to deployment of monitoring modules.

Switch-based solutions deploy their monitoring modules on
switches. PreFix [27] extracts abnormal patterns from switch sys-
logs, which causes frequent CPU interrupts of switch and reduces
the packet forwarding rate. SyNDB [13] and DynaFL [28] capture
real-time snapshots of switches and submit them to a Data Collector
and Analyst (DCA) periodically, which exerts network bandwidth
and brings expenditure to operators for deploying extra infrastruc-
tures. Everflow [31] sets matching rules on switches and mirrors
matched packets to analysts, which requires a considerable number
of servers for analysis. NetSight [10] sends postcards of packets
to servers for packet history reconstruction, which brings over-
head to both switches and bandwidth. To detect inter-switch packet
drops, NetSeer [30] records the sequence numbers of packets in
each switch by a ring buffer. If discrete sequence numbers of re-
ceived packets are detected by a switch, it will inform the upstream
switch of the missing numbers, which will then check its ring buffer
to raise a packet drop event. However, since the memory of the
buffer is limited, the sequence numbers in the ring buffer may be
overridden before the notification arrives if the delay of the link
is too long. Therefore, NetSeer may not be operational in general
networks, where there often exist links with long delays.

Exploiting the topology regularity of data center networks (DCNs),
some solutions have been proposed to localize failures in DCNs.
Pingmesh [9] utilizes the symmetry of DCN topology to reduce the
overhead of real-time active probings. Relying on the hierarchical
routing architecture of DCNs, NetBouncer [23] and 007 [2] localize
failure by monitoring different data paths of more or less equal
lengths. However, the strong dependency on topology regularity of
DCN-based solutions hinders their application in general networks,
which usually have much more complex and irregular topologies.

In this paper, we propose Drift-Bottle, a lightweight and dis-
tributed approach to fast failure localization in general networks.
Drift-Bottle is designed to detect link failures and corruptions, and
localize the links that are responsible for packet losses in the net-
work.

To avoid the inaccessibility of end hosts in general networks, we
deploy its monitoring modules on switches. Each switch records
flow-level features of data flows and uses a lightweight machine
learning model deployed on its programmable data plane to peri-
odically infer whether its monitored flows are normal or not. Then,
each switch generates a local inference for the locations of suspected
failures based on the flow status using a weight assignment scheme.

To achieve fast response to failures while inducing minimum
bandwidth overhead, instead of submitting all local inferences to a
DCA, we design a distributed mechanism to aggregate inferences
from switches along data paths: we consider normal packets in
the network as drift bottles that transport letters about failure in-
ferences between monitors by flows. In detail, we add a special
fixed-length lightweight inference header to each normal packet,
which carries an aggregation of inference results made by all up-
stream switches along the data path. As the inference header “drifts”
in the network along with a packet, each switch on its path would

�5 �6�1
�2

�3
�4�1 �2 �3

�1

�2

�3

�4
�ℎ��� =

1 1 0 0 0 0
1 0 1 0 1 1
0 1 1 0 1 1
0 0 1 1 0 0

�2�1 �3 �4 �5 �6
ℎ1 ↔ ℎ2
ℎ1 ↔ ℎ3
ℎ2 ↔ ℎ3
ℎ3 ↔ ℎ4

(a) Host-based Monitoring

�5 �6�1

�2

�3

�4�1 �2 �3

�1

�2

�3

�4
������ℎ =

1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 1
1 0 0 0 1 1
0 0 0 1 0 0

ℎ1 ↔ �2
ℎ2 ↔ �2
ℎ3 ↔ �2
ℎ4 ↔ �2
ℎ1 ↔ �3
ℎ4 ↔ �3

�2 �3 �4�1 �5 �6

(b) Switch-based Monitoring

Figure 1: Boolean path-link algebra of flow monitoring

update it by aggregating it with its local inference result before
forwarding it to the next hop. In particular, if the updated infer-
ence is strong enough to identify the culprits of failures, a warning
is raised immediately to the network operator. It is worth noting
that operators need no extra physical links or servers to deploy
Drift-Bottle on their networks, nor do they need to worry about
bandwidth overhead caused by this system.

The main contributions of this paper are summarized as follow:
• We propose Drift-Bottle, a lightweight and distributed ap-
proach to failure localization in general networks. Drift-
Bottle works on programmable switches to provide always-
on and host-irrelevant failure localization.
• We design a distributed mechanism to aggregate failure in-
ferences from different switches equipped with Drift-Bottle.
This mechanism avoids excessive overhead and infrastruc-
tural change to the network, which ensures the deployability
and scalability of our system.
• We evaluate Drift-Bottle by simulations in different failure
scenarios and network topologies. The result shows that our
system performs well under different topologies within a
small time (about 0.1s) after the occurrence of failures.
• We build a prototype of Drift-Bottle by P4 language [4] and
deploy it on Tofino [12]. The evaluation shows the overhead
brought by our system is tiny and acceptable.

The rest of the paper is organized as follows. In Section 2, we
explain the motivation of our design. In Section 3 and 4, we describe
the overview of our system and details of each modules respectively.
Then we describe the implementation in Section 5. In Section 6, we
show the evaluation results of our system. In section 7, we introduce
some works related to Drift-Bottle. At last, we make the conclusion
of our paper in Section 8.

2 MOTIVATION
2.1 Switch-based Flow Monitoring
Network failures have adverse impacts on normal data transmission
and drop packets from running flows. To detect and localize failures,
host-based solutions deploy modules on end hosts to perform real-
time monitoring. In general networks, however, the information

338

Drift-Bottle: A Lightweight and Distributed Approach to Failure Localization in General Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

obtained from monitoring is usually not sufficient to pinpoint the
specific links to blame if we consider an end-to-end flow as the
minimummonitoring unit. Take the boolean system from [15] as an
example. We abstract a routing matrix A from the network where
𝐴𝑖 𝑗 = 1 if the 𝑖-th path contains the 𝑗-th link and𝐴𝑖 𝑗 = 0 otherwise.
Then we represent the connectivity of each path with a vector b,
with 𝑏𝑖 = 0, 1 indicates abnormal/normal status of the 𝑖-th path.
The connectivity vector of all links 𝑥 is defined in the same manner.
After monitoring, we solve the binary inequality A𝑥 ≥ b with
respect to 𝑥 to find links that may drop packets. Unfortunately,
due to the linear relativity between paths and monitoring limits in
practice, the routing matrix A can be rank deficient, which leads to
indefiniteness of the inequality. As shown in Figure 1, if either one
of link 𝑙5 and 𝑙6 fails, the operator cannot tell which one of them
to blame for, as all paths of monitored flows contain either both of
them or neither of them.

Drift-Bottle enhances the capability of flow monitoring by de-
ployingmodules on switches rather than on end hosts. Switch-based
monitoring modules can perceive the status of flows at each hop
whereas host-based ones cannot, which will help operators to local-
ize failures in fine granularity. Reconsider the topology in Figure
1. If 𝑠3 detects anomaly from ℎ1 − ℎ4 but 𝑠2 does not, the operator
can infer that 𝑙6 is the culprit of packet loss. Described in algebraic
way, switch-based monitoring modules extend the dimension of
row vector space of A by taking upstream/downstream part of
flows as the minimum monitoring units, and reduce the number of
unrestrained variables in 𝑥 .

Moreover, in general networks, users may not authorize opera-
tors to deploy monitoring modules on their end hosts due to privacy
consideration, which impeding network operators from deploying
host-based monitoring. Also, the fact that end hosts are not always-
on and their devices often come with a variety of models further
hinders the effectiveness and feasibility of deploying monitoring
modules on end hosts.

2.2 Flow Anomaly Detection
Controlled by the application and transport layers, an active flow
will reach a steady state with stable transmission rate and RTT. A
failure occurred in the path of the flow causes packet loss and breaks
its steady state, which inspires us to detect and localize potential
failures by finding out abnormal flows and their data paths. To take
advantages of switch-based monitoring, we regard unidirectional
flows determined by <𝐼𝑃𝑠𝑟𝑐 , 𝐼𝑃𝑑𝑠𝑡> as monitoring targets instead
of bidirectional flows used by flow monitoring methods such as
[2, 5, 6, 15, 18, 22, 29].

Figure 2 shows how unidirectional flows behave while encoun-
tering failures. When link 𝑙 breaks down, packets of flow <ℎ2, ℎ1>
are dropped, which will be detected by the monitoring module
on switch 𝑠 . Although the broken link also drops packets of the
opposite flow <ℎ1, ℎ2>, 𝑠 can still receive its packets normally in
a short time, as the upper layer (e.g. TCP in Transport layer) of
ℎ1 needs to wait for certain time, such as Retransmission Timeout
(RTO), before reacting to the absence of ℎ2.

To detect anomalies of monitored unidirectional flows, we collect
some flow-level metrics periodically, such as the number of received

�

�1 �2�

Figure 2: Behavior of Unidirectional Flows while Encounter-
ing Failures

packets and the amount of received bytes, which are easy to ac-
cess on data plane. Significant changes in these metrics strongly
indicates an anomaly of monitored flow. The most straightforward
way to detect anomalies according to changes in these metrics is to
adopt a threshold-based method. However, it is hard for such ap-
proach to distinguish the subtle difference between changes caused
by potential failures and by normal events like the end of transmis-
sion.

In Drift-Bottle, we turn to a machine learning based anomaly
detection approach. Machine learning models are good at mining
the implicit correlation among high-dimensional data and abstract-
ing the dynamic relationship between input and output, which
well suits our requirement. Supported by in-network intelligence
techniques, we deploy our ML-based models in pipelines of pro-
grammable switches to achieve fast and precise flow anomaly de-
tection. Inference of failure can be made by jointly considering the
status of monitored flows and their data paths.

2.3 Distributed Inference Aggregation
Information obtained from a single monitor is usually not sufficient
to localize potential failures. To provide credible failure localiza-
tion, most existing methods utilize a centralized mechanism for
inference aggregation, such as introducing a DCA and gathering
failure inferences from all monitors periodically. However, aggre-
gating inferences from all monitors is not necessary in most cases.
Intuitively, a failure can be detected and localized by aggregating
just inferences from monitors nearby. Recall the example in Figure
1. When link 𝑙6 fails, the status of flows perceived by 𝑠2 and 𝑠3
is enough to localize the culprit. This inspires us to design a dis-
tributed mechanism that aggregates inferences only from monitors
“locally” to detect potential failures nearby.

A naive design for distributed aggregation is dividing the net-
work into multiple zones statically and aggregating inferences in
each zone. However, the aggregation based on static division does
not fully exploit the status of cross-zone flows. As it is difficult to di-
vide a general network into zones with few inter-zone links, we can
not be optimistic about the performance of distributed aggregation
based on static division.

In Drift-Bottle, we utilize normal packets of existing flows in the
network to carry the inferences. Carried by a packet, the inference
traverses each hop of the corresponding data path. Every time the
packet is forwarded, the inference is aggregated. After multiple
times forwarding, the inference will aggregate multiple inferences
from different switches and may be “strong” enough to localize
potential failures in the data path.

3 SYSTEM OVERVIEW
In this paper, we aim to design a solution to practical failure local-
ization in general networks with following design goals.

339

CoNEXT ’22, December 6–9, 2022, Roma, Italy Xudong Zuo, Qing Li, Jingyu Xiao, Dan Zhao, and Jiang Yong

Real-timemonitoring.Themonitoring system should be always-
on in order to ensure quick reactions to potential network failures.

Hosts irrelevance. It should not require any information from
end hosts, as operators may not be permitted by users to deploy
monitoring modules on their devices.

Balanced Performance. It should make a reasonable trade-off
between accuracy and sensitivity, as frequent false warnings are
unacceptable to network operators.

Low overhead and favorable scalability. The system should
not introduce excessive overhead and structural modification to
networks.

To this end, we present Drift-Bottle, a lightweight and distributed
approach to failure localization in general networks. Drift-Bottle
meets the design goals with three key ideas:

Switch-based monitoring and inference generation. Drift-
Bottle performs failure detection and localization by monitoring
modules deployed on switches. The switch traces the status of
flows passing through it by maintaining a group of registers in
the data plane. If an anomaly is detected from a monitored flow,
the switch considers all links belonging to its upstream data path
as suspects. Oppositely, links corresponding to normal flows are
innocent to potential network failures. In each time window, the
switch separates abnormal flows from normal ones and generates
local failure inferences according to their data paths.

Flow anomaly detection via in-network intelligence. In
order to perform fast flow anomaly detection, Drift-Bottle utilizes
in-network intelligence. In detail, we train a classifier offline and
deploy it on the programmable data plane of a switch. The classifier
takes flow-level features extracted during passive monitoring as
inputs, and determines whether a data flow is normal or not. We
implement the classifier by a decision tree due to two reasons.
First, the decision tree is lightweight enough to be deployed on
data plane under limited computing and storage resources. Second,
the decision tree only relies on a group of classification rules to
complete the classification, which can be easily converted into flow
table rules in the data plane.

Distributed inferences aggregation. After the generation of
failure inferences locally on each switch, we propose a distributed
mechanism to aggregate them with low overhead. Drift-Bottle rep-
resents an inference by a special packet header with a fixed length
of bytes. When a packet enters a switch, the data plane retrieves
the inference stored in its header and aggregates it with the local
inference to obtain an updated inference. If this updated inference
is credible enough, a failure handling process will be triggered. Oth-
erwise, the switch updates the header with the updated inference
and forwards the packet as normal.

The overall architecture and workflow of Drift-Bottle are illus-
trated in Figure 3. At each Drift-Bottle enabled switch, in each time
window, its Flow Monitoring Module collects flow-level features
and feeds them to a decision-tree based classifier to separate normal
and abnormal flows. Then, the Inference Generation Module
uses path information of the monitored flows to generate a local
inference, which essentially assigns a weight for each link, indicat-
ing how likely it is to be blamed for flow anomalies. Drift-Bottle
represents an inference (containing only links with the top 𝑘 high-
est weights) by a fixed length of bytes and stores it into a special

Data Plane

Control Plane

Flow
Status

l1 w1 l2 w2 lk wk...
Local Inference

Inference Header Payload

P4 Switch

Inference Header Payload

Inference Generation Module

Path Infomation

Inference
Generator

Inference Sorter

Flow Monitoring Module

Flow Status Classifier

Saved Features

Feature Extractor

Timer

Inference Aggregation Module
Inference
Aggregator

...

Updated Inference Warning Alarm
Packet Parser

Header

...

Drifted Inference

Figure 3: Overview of Drift-Bottle

header of packets. Once a packet arrives, the Inference Aggrega-
tion Module extracts the inference stored in its header, aggregates
it with the local one, and updates the header with the aggregated
inference. A warning about failures will be raised if the credibility
of the new inference exceeds a threshold set by operators. Finally,
the switch forwards the packet as normal.

To meet our design goals, Drift-Bottle performs real-time moni-
toring by switches and does not require any information from end
hosts. Drift-Bottle utilizes the in-network intelligence technique
and a distributed aggregation mechanism to provide credible in-
ferences about network failures. The overhead introduced by our
system is small as Drift-Bottle confines its main functions to the
data plane, thus avoiding excessive data exchange between the data
plane and the control plane, and adopts an in-packet method for
inference aggregation. Last but not least, the deployment of Drift-
Bottle requires no extra physical links or servers, which ensures
the scalability of our system.

4 DESIGN DETAILS
4.1 Flow Monitoring Module
The flow monitoring module works based on two observations
which are the product of transmission control logic on application
and transport layers: a flow will reach a relative steady state if there
is no failure in the network, such as self-similarity [32] and other
statistical characteristics; once a failure (e.g., a link failure or link
corruption) occurs, the relatively steady state of some flows will be
broken, like a drastic drop of the transmission rate. As discussed
in 2.2, a unidirectional flow will suffer from a failure located in
the upstream part of its data path in spite of the transport layer
protocol, which inspires us to localize potential failures by detecting
anomalies of unidirectional flows passing monitoring switches.

We perform flow monitoring with the help of in-network intelli-
gence. We utilize the technique from [20] to plant a decision tree on
the programmable data plane, which transforms the classification
rules of decision trees into the entries of match-action tables. The
decision tree takes flow-level features as input and infers whether

340

Drift-Bottle: A Lightweight and Distributed Approach to Failure Localization in General Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

a unidirectional flow is determined by <𝐼𝑃𝑠𝑟𝑐 , 𝐼𝑃𝑑𝑠𝑡> is normal or
not during the recent past period of time. To better capture the
changes of monitored flows in the time dimension, we extract some
measures from several sampling time intervals and formulate fea-
ture vectors by windows sliding on sampling intervals. The length
of sampling intervals and sliding windows are configured by opera-
tors and are consistent across the network for the sake of scalability
and deployability. To extract the behavior patterns of most flows,
we set the length of sliding windows to the 90𝑡ℎ percentile of RTTs
of all data paths in the network.

intervals covering the last RTT

the latest interval

sliding window

a sampling interval

timeline

omitted

m m m m m m m m mmmm

measures

f
features

Figure 4: Sampling intervals and sliding windows

Measures in each sampling interval. Table 1 shows the mea-
sures extracted in each sampling interval. 𝑛𝑝𝑎𝑐𝑘𝑒𝑡 and 𝑙𝑒𝑛𝑎𝑙𝑙 sum-
mary the amount of received data. The size of the biggest packet
𝑙𝑒𝑛𝑚𝑎𝑥 and the size of the latest packet 𝑙𝑒𝑛𝑙𝑎𝑠𝑡 are also recorded
because a normal ending flow may transmit packets much smaller
than MTU. We utilize these two measures, the number of bursts
𝑛𝑏𝑢𝑟𝑠𝑡 and the position of the last burst 𝑝𝑜𝑠𝑏𝑢𝑟𝑠𝑡 , to depict detailed
behaviors of monitored flows in each sampling interval. To obtain
them, we divide each sampling interval into sub-intervals with se-
rial numbers. A sub-interval will be labeled as a burst if the switch
receives at least one packet from the monitored flow during it.

Table 1: Measures in Each Sampling Interval

Measure Definition

𝑛𝑝𝑎𝑐𝑘𝑒𝑡 number of received packets
𝑙𝑒𝑛𝑎𝑙𝑙 total size of received packets
𝑙𝑒𝑛𝑚𝑎𝑥 size of the largest packet
𝑙𝑒𝑛𝑙𝑎𝑠𝑡 size of the last packet
𝑛𝑏𝑢𝑟𝑠𝑡 number of bursts
𝑝𝑜𝑠𝑏𝑢𝑟𝑠𝑡 position of the last burst

Features in each sliding window. The Feature Extractor gener-
ates a feature vector 𝑥 = (𝑓𝑓 𝑙𝑜𝑤 , 𝑓𝑎𝑣𝑔, 𝑓𝑙𝑎𝑠𝑡) for a monitored flow in
each sliding window. Features in 𝑓𝑓 𝑙𝑜𝑤 describe the characteristics
of the monitored flow, such as RTT, length of the corresponding
path, and the number of sampling intervals to cover its RTT. Fea-
tures in 𝑓𝑎𝑣𝑔 describe the average behavior of the monitored flow in
the last RTT, i.e., measures averaged over all sampling intervals in
its last RTT. Features in 𝑓𝑙𝑎𝑠𝑡 describe the behavior of the monitored
flow in the last sampling interval. During offline training, we label
a record of features as abnormal if the packets from corresponding
unidirectional flow cannot reach the monitor at the time due to

Table 2: Features in Each Sliding Window

Type Feature Definition

𝑓𝑓 𝑙𝑜𝑤

𝑅𝑇𝑇 RTT of monitored flow
𝑙𝑒𝑛𝑝𝑎𝑡ℎ length of data path of flow
𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 n of intervals to cover a RTT

𝑓𝑎𝑣𝑔

𝑎𝑣𝑔_𝑛𝑝𝑎𝑐𝑘𝑒𝑡 avg. 𝑛𝑝𝑎𝑐𝑘𝑒𝑡 of intervals in last RTT
𝑎𝑣𝑔_𝑙𝑒𝑛𝑎𝑙𝑙 avg. 𝑙𝑒𝑛𝑎𝑙𝑙 of intervals in last RTT
𝑎𝑣𝑔_𝑙𝑒𝑛𝑚𝑎𝑥 avg. 𝑙𝑒𝑛𝑚𝑎𝑥 of intervals in last RTT
𝑎𝑣𝑔_𝑙𝑒𝑛𝑙𝑎𝑠𝑡 avg. 𝑙𝑒𝑛𝑙𝑎𝑠𝑡 of intervals in last RTT
𝑎𝑣𝑔_𝑛𝑏𝑢𝑟𝑠𝑡 avg. 𝑛𝑏𝑢𝑟𝑠𝑡 of intervals in last RTT
𝑎𝑣𝑔_𝑝𝑜𝑠𝑏𝑢𝑟𝑠𝑡 avg. 𝑝𝑜𝑠𝑏𝑢𝑟𝑠𝑡 of intervals in last RTT

𝑓𝑙𝑎𝑠𝑡

𝑙𝑎𝑠𝑡_𝑛𝑝𝑎𝑐𝑘𝑒𝑡 𝑛𝑝𝑎𝑐𝑘𝑒𝑡 in last interval
𝑙𝑎𝑠𝑡_𝑙𝑒𝑛𝑎𝑙𝑙 𝑙𝑒𝑛𝑎𝑙𝑙 in last interval
𝑙𝑎𝑠𝑡_𝑙𝑒𝑛𝑚𝑎𝑥 𝑙𝑒𝑛𝑚𝑎𝑥 in last interval
𝑙𝑎𝑠𝑡_𝑙𝑒𝑛𝑙𝑎𝑠𝑡 𝑙𝑒𝑛𝑙𝑎𝑠𝑡 in last interval
𝑙𝑎𝑠𝑡_𝑛𝑏𝑢𝑟𝑠𝑡 𝑛𝑏𝑢𝑟𝑠𝑡 in last interval
𝑙𝑎𝑠𝑡_𝑝𝑜𝑠𝑏𝑢𝑟𝑠𝑡 𝑝𝑜𝑠𝑏𝑢𝑟𝑠𝑡 in last interval

failures. Otherwise, it is labeled as normal. The details of features
are summarized in Table 2.

During online monitoring, the module updates its measure reg-
isters when receiving packets of monitored flows. The data plane
only maintains the measures of the latest sampling interval. We set
a timer with a length of a sampling interval on the control plane.
Once the timer expires, the control plane replicates measures of
the latest measures from the data plane, calculates 𝑓𝑎𝑣𝑔 based on
measures of former intervals, then sends 𝑓𝑓 𝑙𝑜𝑤 and 𝑓𝑎𝑣𝑔 to the data
plane. The data plane concatenates all types of features to form
feature vectors of the current sliding window and feeds them to
the decision tree to obtain the status of monitored flows.

4.2 Inference Generation Module
With results given by the Flow Monitoring module, the switch sup-
poses to generate a local inference about the location of potential
failures. As the failure model in 2.2 describes, an abnormal uni-
directional flow indicates potential failures in the upstream part
of its data path with respect to the monitoring switch. Naturally,
the operator may narrow down the scope of potential failure lo-
cations to the intersection of upstream data paths of all abnormal
unidirectional flows.

We propose a weight assignment scheme to measure the likeli-
hood of corruption of each link. A weight counter𝑤𝑖 is set for each
link 𝑙𝑖 . Once 𝑙𝑖 appears in the upstream data path of an abnormal
flow, the corresponding counter𝑤𝑖 is incremented by 1. The link
with the highest counter is blamed for existing flow anomalies.

However, the scheme above is not good enough as it does not
utilize the information from the “innocent” part of data paths. Con-
sider the situation shown in Figure 5 where unidirectional flows
<ℎ1, ℎ9>, <ℎ2, ℎ9>, · · · , <ℎ8, ℎ9 >(marked by brown arrows) and
also <ℎ9, ℎ1>, <ℎ10, ℎ1> (marked by purple arrows) are active and
monitored by switch 𝑠 . The actual failure locates in link 𝑙2, which
leads to anomalies of unidirectional flows <ℎ9, ℎ1> and <ℎ10, ℎ1>.
Suppose the FlowMonitoringmodule on 𝑠 correctly infers the status

341

CoNEXT ’22, December 6–9, 2022, Roma, Italy Xudong Zuo, Qing Li, Jingyu Xiao, Dan Zhao, and Jiang Yong

of <ℎ4, ℎ9>, ..., <ℎ8, ℎ9> as normal flows and <ℎ9, ℎ1>, <ℎ10, ℎ1> as
abnormal flows but misclassifies <ℎ1, ℎ9>, <ℎ2, ℎ9> and <ℎ3, ℎ9>
as abnormal flows. Using the method above, the operator finds
that link 𝑙1 gets a weight of 3 while link 𝑙2 gets a weight of 2, and
mistakenly believes 𝑙1 is more responsible for the failure although
actually most of the flows passing it stays normal.

�1 �2

�1

�8

�9

�10�

�2

Figure 5: An example of false warning due to the absence of
information from normal flows

It is worth noting that, for a normal flow inferred by the Flow
Monitoring module, we tend to believe its upstream part of data
path is less guilty of any failures. To exploit the information from
normal flows, whenever a link 𝑙𝑖 appears in the upstream data path
of a normal flow, we decrement its corresponding counter by 1.
Reconsider the toy situation in Figure 5 with the information from
normal flows. The operator will find that 𝑙2 is the most suspicious
link with a weight of 2 while 𝑙1 gets a weight of -2. Thus, the failure
will be localized accurately.

The workflow of the Inference Generation module is outlined in
Algorithm 1. We represent an inference by a set containing pairs
formed by links and their weights, as 𝐼 = {(𝑙𝑖 ,𝑤𝑖)}. Then, we define
the aggregation operator

⊕
, which simply aggregates inference

𝐼1 = {(𝑙𝑖 ,𝑤1𝑖)} and 𝐼2 = {(𝑙𝑖 ,𝑤2𝑖)} as 𝐼1
⊕

𝐼2 = {(𝑙𝑖 ,𝑤1𝑖 + 𝑤2𝑖)}.
During monitoring, the module generates an inference for each
monitored flow based on its status and upstream part of data path.
The control plane takes these inferences of each link away and
aggregates them one by one to generate the local inference. Then,
the control plane sorts the links in the local inference by their
weights, and saves the top𝑘 links with the highest non-zeroweights,
where 𝑘 is the length of inference. At last, the control plane sends
the local inference to the data plane. Sorted by their weights, links
belonging to more upstream data paths of abnormal flows but
less upstream data paths of normal flows will rank higher, which
indicates higher suspicion for causing failures.

4.3 Inference Aggregation Module
After the generation of local inferences on each monitoring switch,
we propose a distributed mechanism to aggregate them and raise
warnings about failures. Drift-Bottle utilizes normal packets in the
network for inference aggregation. When a packet is received by
the first switch from an end host, the Inference Aggregator module
on the switch’s data plane packs the local inference in a special
header of the packet and lets the inference drift with the packet.
Then, as the packet travels along its data path towards the desti-
nation, whenever it is received by a switch, the switch’s Inference
Aggregation module extracts the inference from the packet header,
aggregates the received inference with its local inference, checks
whether the new inference is strong enough to raise a warning

Algorithm 1: Local Inference Generation
Input: 𝐹 - set of monitored flows, 𝑃 - upstream data paths

of flows, 𝐿 - set of links, 𝑆 - status of monitored
flows, 𝑘 - length of inference

Output: 𝐼 - local inference about failures
1 𝐼𝐹 ← ∅ on the data plane;
2 for 𝑓 ∈ 𝐹 do
3 𝑝𝑎𝑡ℎ𝑓 ← upstream data path of 𝑓 from 𝑃 ;
4 𝑠𝑡𝑎𝑡𝑢𝑠𝑓 ← status of 𝑓 from 𝑆 ;
5 if 𝑠𝑡𝑎𝑡𝑢𝑠𝑓 = abnormal then
6 𝐼𝑓 ← {(𝑙𝑖 , 1) | ∀𝑙𝑖 ∈ 𝑝𝑎𝑡ℎ𝑓 };
7 else
8 𝐼𝑓 ← {(𝑙𝑖 ,−1) | ∀𝑙𝑖 ∈ 𝑝𝑎𝑡ℎ𝑓 };
9 end if

10 𝐼𝐹 ← 𝐼𝐹 ∪ {𝐼𝑓 };
11 end for
12 Upload 𝐼𝐹 to the control plane;
13 𝐼 ← {(𝑙𝑖 , 0) | ∀𝑙𝑖 ∈ 𝐿} on the control plane;
14 for 𝐼𝑓 ∈ 𝐼𝐹 do
15 𝐼 ← 𝐼

⊕
𝐼𝑓 ;

16 end for
17 Remove (𝑙𝑖 ,𝑤𝑖) from 𝐼 if 𝑤𝑖 = 0;
18 Sort 𝐼 = (𝑙𝑖 ,𝑤𝑖) in descending order by𝑤𝑖 ;
19 Truncate 𝐼 to the 𝑘-th (𝑙𝑖 ,𝑤𝑖);
20 Send 𝐼 to the data plane;
21 return 𝐼 = {(𝑙𝑖 ,𝑤𝑖)}

about failures, updates the header with the new inference, and then
forward the packet as normal. The process repeats until the packet
reaches the last switch before its destination, where the switch
deletes the inference from the header before forwarding the packet
to the destination host.

Intuitively, after multiple times of aggregations, the weight of
the culprit will far exceed that of normal links in drifted inferences.
Thus, we propose a threshold-based mechanism for monitors to
raise warnings about potential failures. After the aggregation and
update of the drifted inference, the monitor checks whether the
inference meets the conditions below:

ℎ𝑜𝑝𝑛𝑜𝑤 ≥ ℎ𝑜𝑝𝑚𝑖𝑛 ,

𝑤0 ≥ 𝛼 × ℎ𝑜𝑝𝑛𝑜𝑤 ,

𝑤0 ≥ 𝛽 ×𝑤1 ,

(1)

where ℎ𝑜𝑝𝑛𝑜𝑤 is the number of times the drifted inference is re-
ceived and aggregated; 𝑤0 is the highest weight of accused links
in the inference, and 𝑤1 is the second highest one; ℎ𝑜𝑝𝑚𝑖𝑛 and
𝛼 are preset thresholds related to the scale of the network. The
selection of 𝛽 will be discussed in Section 6.7. The link with the
highest weight will be labeled as the culprit when an inference
exceeds those thresholds. Notice that multiple links can be reported
by different drifted inferences, which ensures the capability of Drift-
Bottle to handle concurrent failure scenarios.

As can be observed from equation (1), Drift-Bottle will not raise a
warning unless the drifted inference has aggregated local inferences
from at least ℎ𝑜𝑝𝑚𝑖𝑛 switches, and at least 𝛼 abnormal flows are

342

Drift-Bottle: A Lightweight and Distributed Approach to Failure Localization in General Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

detected by each switch on average. In practice, network operators
can make a trade-off between sensitivity to potential failures and
acceptable FPR (false positive rate) by adjusting the thresholds.With
lower ℎ𝑜𝑝𝑚𝑖𝑛 and 𝛼 , Drift-Bottle is more sensitive when detecting
network anomalies, but is also more prone to classification error
caused by the flow status classifier. With higher ℎ𝑜𝑝𝑚𝑖𝑛 and 𝛼 ,
Drift-Bottle will be more tolerant to network “jitters” but may also
miss out network failures which cause dropped packets from few
flows.

The handling of warnings is up to network operators, according
to their specific scenarios, and is out of the scope of this paper. For
example, switches may perform local re-routing after a warning is
raised, or activate probings towards accused links for more precise
information of failures.

It should be noted that the switch does not update its local
inference to the aggregated one although the latter may contain
more information. We let each switch keeps its local inference
unchanged in order to avoid over aggregation. Consider a simple
linear topology formed by three switches 𝑠1, 𝑠2, 𝑠3 sequentially, with
their local inferences 𝐼1, 𝐼2, 𝐼3. 𝑠1 is forwarding multiple packets to 𝑠3
via 𝑠2. If 𝑠2 updates its local inference after aggregation, the drifted
inference from the 𝑛-th packets received by 𝑠3 will be 𝑛 × 𝐼1

⊕
𝐼2,

which leads to a strong bias towards 𝐼1 that may cause an incorrect
warning about failures.

5 IMPLEMENTATION
We use P4 [4] (750 lines of codes) to implement Drift-Bottle in
Intel Tofino model [12]. The P4 implementation mainly includes
feature extraction, anomaly detection, inference generation and
aggregation.

Feature extraction. Drift-Bottle’s traffic features are imple-
mented on the register in P4. At first, we extract measures divided
based on sampling intervals. When a packet enters the switch, we
get the 𝑖𝑛𝑔𝑟𝑒𝑠𝑠_𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 defined in P4 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

and calculate 𝑓 𝑙𝑜𝑤𝑖𝑑 by hashing the 5-tuple (𝐼𝑃𝑠𝑟𝑐 , 𝐼𝑃𝑑𝑠𝑡 , 𝑝𝑜𝑟𝑡𝑠𝑟𝑐 ,
𝑝𝑜𝑟𝑡𝑑𝑠𝑡 , 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙). Suppose there are𝑊 sampling intervals, the 𝑖-th
measure of the flow is indexed by 𝑓 𝑙𝑜𝑤𝑖𝑑 ·𝑊 + 𝑖 . Topology features
𝑓𝑓 𝑙𝑜𝑤 are sent from the controller to the flow table of the switch.
To reduce the consumption of memory units, only the measures
in the last sampling interval will be maintained on the data plane.
Measures of other intervals will be uploaded to the control plane
to calculate 𝑓𝑎𝑣𝑔 .

Anomaly detection. Drift-Bottle’s anomaly detection is im-
plemented by match-action tables in P4. The whole table matches
binary features, which are generated by concatenating topology
features and traffic features of monitored flows. The entries of
the tables are transformed from the rules of decision-tree-based
classifiers. At the end of each sliding window, control plane takes
measures of the current sampling interval. Then, it sends features
𝑓𝑎𝑣𝑔 to data plane by a specially constructed packet. Combined with
features in the current window, the packet enters the flow anomaly
detection module in the pipeline to get the status of monitored
flows.

Inference generation. After the generation of flow status, Drift-
Bottle updates the weights of local inference, and finally saves the
top 𝑘 links with the highest weights. The control plane of the

switch mainly takes charge of the process. Drift-Bottle feeds the
status into a match-action table formed by path information to
get the inference of each flow. Then, we encapsulate the result
as a packet, upload the packet to the control plane through the
PCI bus, aggregate inferences of all monitored flows, sort the links
by their weights in CPU, and then write sorted inferences back
to the register by another constructed packet. The delay of the
whole process is on a millisecond level. Notice that the process only
appears at the end of each sampling interval, and only one pipeline
is occupied during inference generation. Hence, the influence on
throughput is negligible.

Inference aggregation. Drift-Bottle performs inference aggre-
gation when a packet arrives at a switch. A certain register can
only be read and written once in each stage of the P4 pipeline. To
read the inference in one stage, we divide the bits of one register
into individual parts and store the weight of one link in one part.
In detail, we allocate 2 bytes for each accused link in the failure
inference. The higher 1B encodes the identity of the link, and the
lower 1B records the corresponding weight (-15~241, 0 is omitted).
Drifted inferences requires 1B in addition to record ℎ𝑜𝑝𝑛𝑜𝑤 . When
the drifted inference of the arrived packet is extracted by parser,
we utilize specialized match-action tables to aggregate it with the
local inference and select the top 𝑘 links with the highest weights
to form a new drifted inference.

6 EVALUATION
6.1 Experiment Setup

Topology setting. To evaluate the performance of Drift-Bottle
in different scenarios, we choose several topologies from Topolo-
gyZoo [14] and Rocketfuel [21], which vary in scale and structure.
Geant2012 is the topology of the European academic network. Chi-
nanet is about the same scale as Geant2012, but contains some
busy nodes whose degrees are obviously greater than others, which
makes the variance and skewness of degrees of nodes in Chinanet
much bigger than ones in Geant2012 (17.30 to 3.79 and 2.63 to
1.42). Tinet connects its two main subnets with several very long
links. AS1221 is the topology of a ring-like AS network. The basic
statistics of the chosen topologies are shown in table 3.

Table 3: Statistics of Chosen Topologies

Topology Node Link VAR. of link latency

Geant2012 40 61 14.12
Chinanet 42 66 8.09
Tinet 53 89 247.64
AS1221 104 151 9.39

Dataset generation. To train our decision-tree-based models
in the flow monitoring modules, we generate datasets of network
failures by simulation with Mininet [16] on these chosen topologies.
We run the simulation under the settings below to approximate
failure scenarios in real networks: the flows between each pair of
hosts are generated randomly based on the preset flow density;
the total bytes transmitted by the generated flows obey long-tailed

343

CoNEXT ’22, December 6–9, 2022, Roma, Italy Xudong Zuo, Qing Li, Jingyu Xiao, Dan Zhao, and Jiang Yong

distribution; the packet-sending process on each host obeys PPBP
model [32] in order to maintain self-similarity in statistics.

During simulation, we inject failures by setting the status of
links and nodes to failure manually, then we capture pcap records
from each monitor before and after the occurrence of failures. We
extract and label feature records of unidirectional flows from raw
pcap records as shown in Section 4.1. The generated dataset is di-
vided into a training set and a testing set at the ratio of 3:1 after
feature extraction and labeling. For scenarios of single failure, we
break down each link or node in the chosen topologies and gener-
ate dataset individually. We also generate the dataset of multiple
failures for a detailed evaluation of our system.

Simulation setup. We evaluate Drift-Bottle mainly by simu-
lation. We generate random traffic in the chosen topologies by
Mininet, and record the forwarding history of packets as described
before. Then we implement a simulator using Python, which re-
plays the recorded traffic and simulates the work flow of our system.
The simulator loads our offline-trained flow status classifiers, then
performs feature extraction, inference generation, inference aggre-
gation, and warning raising with replayed flows in different failure
scenarios. We also implement some baselines in the simulator for
evaluation. The simulation lasts for the largest RTT of all flows in
the topology, which is at the magnitude of 0.1 seconds.

6.2 Baselines and Metrics
Baselines. To evaluate the weight assignment scheme shown

in Section 4.2, we compare our system against different schemes.
Non-Negative scheme adds 1 to the corresponding counter for a
link related to an abnormal flow and does nothing otherwise. 007-
Drifted scheme is a variant of the voting scheme in [2], which adds
1/𝑛 to the counter for a link related to an abnormal flow where
𝑛 is the length of corresponding upstream data path. In addition,
007-Modified adds −1/𝑛 to the counter for a link related to a normal
flow.

We also compare Drift-Bottle against several centralized mech-
anisms to evaluate our distributed aggregation mechanism. DB-
Centralized and 007-Centralized use the same weight assignment
scheme as Drift-Bottle and 007-Drift, respectively. These centralized
mechanisms aggregate local inferences from all monitors together
periodically. Then they utilize the procedure from [2] to find prob-
lematic links: centralized mechanisms check whether the weight
of 1𝑠𝑡 link is greater than a preset portion of the sum of weights
of all links or not. If so, they report the first link as a culprit, then
execute the procedure again to the links that remained until no link
exceeds the threshold.

For all distributed and centralized mechanisms, we collect links
reported within a sliding window after the occurrence of failures.
Then we compare themwith the ground truth for evaluation. Unless
stated, the length of inference of all distributed mechanisms is set
to 4.

Metrics. The main measurements used for evaluation are pre-
cision, recall and F1. Notice that Drift-Bottle regards a link as the
basic failure unit. Thus, we calculate precision as the ratio of cor-
rectly reported links among the warnings, and recall as the ratio of
correctly reported links among actually failed links. F1 is the har-
monic average of precision and recall. We also introduce accuracy

as the ratio of correctly classified links among all links, and FPR
as the ratio of incorrectly accused links among innocent links. For
example, in a scenario with 4 failures among 10 links, if a failure lo-
calization system reports 5 accused links and 3 of them are correct,
its precision, recall, accuracy and FPR would be 60%, 75%, 70% and
33.3%, respectively.

6.3 Flow Status Classifier
Before the evaluation of the whole system, we show the perfor-
mance of trained flow status classifiers. We set the length of a sam-
pling interval to 4ms for all classifiers. Figure 6 shows the results.
With the significant imbalance between normal and abnormal sam-
ples, we mainly focus on the recall of the classifiers for each class,
i.e, the ratio of correctly classified samples of normal/abnormal
flows.

Geant2012 Chinanet Tinet AS1221
Topology

0.2

0.4

0.6

0.8

1.0

M
et
ric

s

0.814
0.848

0.793
0.838

0.805 0.826

0.751
0.808

Recall of normal
Recall of abnormal

Figure 6: Flow status classifiers

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

F1

Drift-Bottle
Non-Negative

007-Drifted
007-Modified

(a) Geant2012

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

F1
Drift-Bottle
Non-Negative

007-Drifted
007-Modified

(b) Chinanet

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

F1

Drift-Bottle
Non-Negative

007-Drifted
007-Modified

(c) Tinet

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

F1

Drift-Bottle
Non-Negative

007-Drifted
007-Modified

(d) AS1221

Figure 7: F1-score of different weight assignment schemes

344

Drift-Bottle: A Lightweight and Distributed Approach to Failure Localization in General Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

6.4 Weight Assignment Scheme
In this experiment, we evaluate the performance of different weight
assignment schemes in distributed aggregationmechanisms.We tra-
verse every single link failure scenario on the chosen topologies and
compare the metrics of our system with other weight assignment
schemes under different flow densities (from 0.1 to 1.0). Figure 7
shows the F1-score of those weight assignment schemes. Drift-
Bottle significantly outperforms Non-Negative and 007-Drifted
schemes, as they do not utilize the information of normal flows. 007-
Modified scheme reaches about the same performance as our system
with the negative weights assigned to innocent links. However, 007-
Modified scheme requires the representation and operation of float
numbers, which is hard to implement on programmable data planes.
Therefore, the weight assignment scheme of Drift-Bottle is still the
optimal choice among these schemes.

6.5 Single Failure Scenario
Here we focus on the performance of our system when dealing
with single link failure scenarios. We compare Drift-Bottle and
007-Drifted with their centralized versions, which aggregate failure
inference from all switches together and raise warnings periodically.
Figure 8 shows the results. Drift-Bottle clearly outperforms 007-
Drifted and its corresponding centralized mechanism on all chosen
topologies. It is not surprising that Drift-Bottle achieves better
performances on Chinanet and AS1221. The star-like structure of
Chinanet makes sure there are almost no unidentifiable links in
its path-link algebra. So does the ring-link structure of AS1221.
Oppositely, several long links carry most of inter-subnets flows in
Tinet, which harms the performance of our system. The accuracy
of our system is beyond 98.59%, while the FPR never exceeds 0.5%.

It should be noticed that Drift-Bottle outperforms its centralized
version under high flow density. We find it reasonable as the cen-
tralized mechanism aggregates failure inferences from all switches
and naturally introduces bias to innocent links. For example, a busy
but normal link may get considerable weights in local inferences
of several switches because of noise. Once aggregated by central-
ized mechanism, it may overshadow the signal of the real culprit,
leading to an incorrect warning.

6.6 Multiple Failures Scenarios
The next experiment aims to evaluate the ability of Drift-Bottle
when facing multiple failures.

Multiple failures caused by single node failure. First, we in-
troduce multiple failed links by traversing every single node failure
scenario. A node failure is equivalent to failures of all connected
links as our system regards a link as the basic failure unit. Figure
9 shows the results. Drift-Bottle still performs better than other
schemes. Compared with itself in single link failure scenarios, our
system gets lower recall as the number of failed links is much larger.
However, operators still benefit from the high precision of Drift-
Bottle, as the failed node will be located naturally once several
connected links are reported. The accuracy of our system is beyond
97.76%, and the FPR is 0.5%.

Random multiple failures. Then, we evaluate Drift-Bottle
by injecting multiple failures randomly. We set failure units at
each number randomly for 30 epochs and calculate the metrics of

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi

on

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

(a) Geant2012

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi

on

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

(b) Chinanet

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ec
isi

on

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

(c) Tinet

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi

on

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

(d) AS1221

Figure 8: Single link failure scenarios

our system. Figure 10 shows the main metrics of Drift-Bottle on
Chinanet under flow density of 1.0. Although the accuracy, recall
and F1-score all drop inevitably as the number of failures increases,
the precision of Drift-Bottle maintains at an considerable level. Our
system performs similarly on other topologies.

6.7 Threshold-based Warning Raising
Mechanism

In this experiment, we evaluate the performance of our threshold-
based warning raising mechanism. We mainly discuss the selection
of 𝛽 as other parameters are determined by the scale of the network.
Recall the mechanism shown in 4.3, the first link will be reported as
a culprit if𝑤0 ≥ 𝛽×𝑤1, where𝑤𝑖 is the weight of the 𝑖-th link 𝑙𝑖 in a

345

CoNEXT ’22, December 6–9, 2022, Roma, Italy Xudong Zuo, Qing Li, Jingyu Xiao, Dan Zhao, and Jiang Yong

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi

on

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

(a) Geant2012

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi

on

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

(b) Chinanet

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi

on

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

(c) Tinet

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi

on

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

0.2 0.4 0.6 0.8 1.0
Flow Density

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Drift-Bottle
DB-Centralized

007-Drifted
007-Centralized

(d) AS1221

Figure 9: Multiple links failures caused by single node failure

drifted inference. For inferences without a failed link, we expect the
ratio of weights of the first and the second link to not exceed 𝛽 ; for
inferences with a failed link, we expect the ratio of weights of the
failed and the first innocent link to be beyond 𝛽 . Figure 11 shows
the CDFs of these two kinds of ratios of drifted inferences in single
link failure scenarios. Our warning raising mechanism maintains
good performance under the same 𝛽 in different topologies.

6.8 Warning Locality
Here we focus on the perception scope of switches in Drift-Bottle.
Figure 12 shows the warning frequency of each node while facing
a failure. Generally, most of the warnings are raised by nodes in
proximity to the failure unit, which verifies our motivation in 4.3.

2 4 6 8 10 12 14
Number of Failures (link)

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ric

s

Accuracy
F1

Precision
Recall

(a) Multiple links

2 4 6 8 10 12 14
Number of Failures (node)

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ric

s

Accuracy
F1

Precision
Recall

(b) Multiple nodes

Figure 10: Multiple failures scenarios (Chinanet)

-1.0 0.0 1.0 2.0 3.0 4.0 5.0
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi
ric

al
CD

F

β = 1.5

FNR =0.214

TNR =0.841

Bad : Good
First : Second

(a) Geant2012

-1.0 0.0 1.0 2.0 3.0 4.0 5.0
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi
ric

al
CD

F

β = 1.5

FNR =0.275

TNR =0.832

Bad : Good
First : Second

(b) Chinanet

-1.0 0.0 1.0 2.0 3.0 4.0 5.0
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi
ric

al
CD

F

β = 1.5

FNR =0.338

TNR =0.874

Bad : Good
First : Second

(c) Tinet

-1.0 0.0 1.0 2.0 3.0 4.0 5.0
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi
ric

al
CD

F

β = 1.5

FNR =0.118

TNR =0.88

Bad : Good
First : Second

(d) AS1221

Figure 11: CDFs of ratios of drifted inferences in single link
failure scenarios

Notice the number of nodes which raises warnings about failed
unit in Chinanet is larger than that in Geant2012. We attribute it to
the highly star-like structure of topology of Chinanet.

6.9 Length of Inference
Figure 13 shows the performance of Drift-Bottle under different
length of inference. As can be seen, the performance of Drift-Bottle
improves significantly as the length of inference increases from 2
to 4. Extending the length beyond 4 only brings about very small
(if any) improvement. It should be noted that implementing Drift-
Bottle with long length of inference is resource-consuming. The
P4 prototype of Drift-Bottle needs resubmits to complete inference
aggregation with length of inference longer than 4. The selection
of length of inference to 4 is a reasonable trade-off between perfor-
mance and deployability.

346

Drift-Bottle: A Lightweight and Distributed Approach to Failure Localization in General Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

Failed Link
Warnings

0

10

20

30

40

50

60

W
ar
ni
ng

Fr
eq
ue
nc
y

Failed Node
Warnings

0

10

20

30

40

50

60

70

80

W
ar
ni
ng

Fr
eq
ue
nc
y

(a) Geant2012

Failed Link
Warnings

5

10

15

20

25

30

W
ar
ni
ng

Fr
eq
ue
nc
y

Failed Node
Warnings

0

5

10

15

20

W
ar
ni
ng

Fr
eq
ue
nc
y

(b) Chinanet

Figure 12: Warning locality with respect to failures

2 4 6 8 10 12 163
Length of Local Inference

0.6

0.8

1.0

M
et
ric

s

Accuracy
F1

Precision
Recall

(a) Geant2012

2 4 6 8 10 12 163
Length of Local Inference

0.6

0.8

1.0

M
et
ric

s

Accuracy
F1

Precision
Recall

(b) Chinanet

Figure 13: Performance of Drift-Bottle under different length
of inference

6.10 Resource Usage
Bandwidth. To represent and aggregate the drifted inferences

(length of inference=4), we add a new header of 9B in each normal
packet. Drift-Bottle only induces a negligible transmission amount
of under 1% with respect to MTU of 1500B.

Switches. For switches equipped with P4 programs of Drift-
Bottle, we evaluate their hardware resource usage and latency of
packet processing. The P4 program of Drift-Bottle consumes 11
stages, 6.88% of SRAMs, 1.74% of TCAMs, 14.58% of meter ALUs
and 13.54% of logical tables. While running our system, the av-
erage packet latency of switches increases from 732ns to 845ns
under traffic of 100Gbps. The influence on throughput of switches
is acceptable.

7 RELATEDWORK
Failure localization in data center networks. Pingmesh from

[9] implements a network measurement system to access real-time
network latency between servers intra-pod, inter-pod, and inter-DC.

NetBouncer [23] enables self-to-self proactive probing by bouncing
probing packets received by top-level switches back to servers. 007
[2] uses a voting scheme to locate links that are guilty of packet
retransmission. [19] utilizes a hypothesis test on TCP metrics to
single out underperforming flows. NetPoirot [3] feeds various mea-
sures gathered from servers to a decision-tree-based model in order
to discover the root cause of network anomaly.

Failure localization in general networks. In scenarios such
as corporate networks, operators turn to host-based approaches
for failure localization. [22] explores relativity between flow anom-
aly and link failures using belief networks, which is significantly
time-consuming in large-scale networks. Network tomography
[5, 6, 29] monitors multiple flows to access the packet loss rate
of links via solving a path-link linear system, but fails to specify
accurate failure location in the presence of high linear relativity
between path vectors. To narrow down the scope of accused links,
[18] introduces stochastic analysis after primary tomography, and
MAX_COVERAGE [15] proposes a greedy solution to binary path-
link algebra.

Host-based approaches are not suitable for scenarios like ISP
networks, as the deployment of modules on end hosts may not be
permitted by their users. Switch-based approaches deploy mon-
itoring modules on switches instead of hosts. Blink [11] detects
retransmission from a set of selected flows on data plane, but does
not provide the location of potential failures. Prefix [27] utilizes
random forest to predict hardware failures of switches by min-
ing abnormal patterns in syslog sequences. SyNDB [13] generates
summaries of packets entering switches and submits them to the
database for further analysis. DynaFL [28] compares fingerprinting
and forwarding records of packets between adjacent switches to
detect malicious behavior. Everflow [31] mirrors abnormal packets
to analysts and diagnoses the root cause of network failures by
injecting an incarnation of the abnormal packet to its first hop.
NetSight [10] reconstructs histories of packets by recording and
collecting postcards of passing packets. NetSeer [30] traces each
step of packet processing in the data plane to extract event packets,
then it sends the headers and metadata of distinct event packets to
the analyst for further analysis.

Programmable data plane. Traditional switches process pack-
ets with fixed logic and fall short to meet new requirements brought
by emerging network technologies and protocols one after another.
To enhance the flexibility of network management and the ability
to support new protocols, OpenFlow [17] decouples the control
plane and the data plane of switches from each other, and pro-
vides standardized interfaces for management and configuration.
[4] introduces protocol-independent packet processors and the cor-
responding programming language P4, which enables operators
to customize processing logic in the data plane. Some monitoring
tools such as Dapper [8] utilize the programmable data plane to
perform failure detection in fine granularity.

In-network intelligence. In-network intelligence technique
aims to deploy machine learning models on switches with the limit
of computing and storage resources. [20, 25] plant trained decision
trees on the data plane of programmable switches by translating
classification rules into match-action entries in flow tables, which
enables switches to deal with multiple kinds of classification tasks
with a line rate of packets processing. PUFF [26] utilizes in-network

347

CoNEXT ’22, December 6–9, 2022, Roma, Italy Xudong Zuo, Qing Li, Jingyu Xiao, Dan Zhao, and Jiang Yong

intelligence to localize intra-domain network failures by extracting
flow-level features periodically and feeding them to a pre-trained
machine learning module in switches.

8 CONCLUSION
We introduce Drift-Bottle, a lightweight and distributed approach
to failure localization in general networks. Drift-Bottle utilizes the
in-network intelligence technique to detect flow-level anomalies
on switches, then generates concise inferences about potential
failures with information of data paths. Instead of a centralized
mechanism, we design a distributed mechanism for inferences ag-
gregation which avoids additional infrastructural modification in
networks. Switches with the deployment of Drift-Bottle work at a
line rate, as we implement its function mainly on the data plane.
The evaluation shows that Drift-Bottle meets the demand of net-
work operators by providing fast, precise, and lightweight failure
localization in general networks.

ACKNOWLEDGEMENT
Wewould like to thank our shepherd (Aurojit Panda) and the anony-
mous reviewers for their constructive comments. This work is sup-
ported by the National Key Research and Development Program
of China under grant No. 2020YFB1804704, the National Natural
Science Foundation of China under grant No. 61972189, the Ma-
jor Key Project of PCL under grant No. PCL2021A03-1, and the
Shenzhen Key Lab of Software Defined Networking under grant
No. ZDSYS20140509172959989.

REFERENCES
[1] V. Arrigoni, N. Bartolini, A. Massini, and F. Trombetti. 2021. Failure Localization

through Progressive Network Tomography. In IEEE INFOCOM.
[2] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. Liu, J. Padhye, B. T. Loo, and G. Outhred.

2018. 007: Democratically Finding the Cause of Packet Drops. In USENIX NSDI.
[3] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. 2016. Taking the

Blame Game out of Data Centers Operations with NetPoirot. In ACM SIGCOMM.
[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, and D. Walker. Jul. 2014. P4: Programming
Protocol-independent Packet Processors. ACM SIGCOMM Computer Communi-
cation Review (SIGCOMM-CCR) 44, 3 (Jul. 2014), 87–95.

[5] Y. Chen, D. Bindel, and R. H. Katz. 2004. Tomography-based Overlay Network
Monitoring. In ACM IMC.

[6] Y. Chen, D. Bindel, H. Song, and R. H. Katz. 2004. An Algebraic Approach to
Practical and Scalable Overlay Network Monitoring. In ACM SIGCOMM.

[7] J. Dean. 2009. Designs, Lessons and Advice from Building Large Distributed
Systems. In LADIS keynote.

[8] M. Ghasemi, T. Benson, and J. Rexford. 2017. Dapper: Data Plane Performance
Diagnosis of TCP. In ACM SOSR.

[9] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,
H. Chen, Z. Lin, and V. Kurien. 2015. Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis. In ACM SIGCOMM.

[10] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and Nick McKeown. 2014. I
Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot
Networks. In USENIX NSDI.

[11] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio, and L.
Vanbever. 2018. Blink: Fast Connectivity Recovery Entirely in the Data Plane. In
USENIX NSDI.

[12] Intel. 2020. Tofino. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-series/tofino.html.

[13] P. G. Kannan, N. Budhdev, R. Joshi, and M. C. Chan. 2021. Debugging Transient
Faults in Data Centers using Synchronized Network-wide Packet Histories. In
USENIX NSDI.

[14] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. Oct. 2011. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communications (JSAC)
29, 9 (Oct. 2011), 1765–1775.

[15] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. 2007. Detection and
Localization of Network Black Holes. In IEEE INFOCOM.

[16] B. Lantz, B. Heller, and N.McKeown. 2010. A Network in a Laptop: Rapid Proto-
typing for Software-Defined Networks. In ACM HotNets.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Apr. 2008. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM Computer Communication Review (SIGCOMM-CCR)
38, 2 (Apr. 2008), 69–74.

[18] H. X. Nguyen and P. Thiran. 2007. The Boolean Solution to the Congested IP
Link Location Problem: Theory and Practice. In IEEE INFOCOM.

[19] A. Roy, S. Diego, H. Zeng, J. Bagga, and A. C. Snoeren. 2017. Passive Realtime
Datacenter Fault Detection and Localization. In USENIX NSDI.

[20] J.-H. Lee K. Singh. 2020. SwitchTree: In-network Computing and Traffic Analyses
with Random Forests. Neural Computing and Applications (2020).

[21] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. 2004. Measuring ISP
Topologies with Rocketfuel. IEEE/ACM Transactions on Networking (ToN) 12, 1
(2004), 2–16.

[22] M. Steinder and A. S. Sethi. Oct. 2004. Probabilistic Fault Localization in Commu-
nication Systems Using Belief Networks. IEEE/ACM Transactions on Networking
(ToN) 12, 5 (Oct. 2004), 809–822.

[23] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and D. Xiang. 2019. Net-
Bouncer: Active Device and Link Failure Localization in Data Center Networks.
In USENIX NSDI.

[24] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. 2010. California Fault Lines:
Understanding the Causes and Impact of Network Failures. In ACM SIGCOMM.

[25] Z. Xiong and N. Zilberman. 2019. Do Switches Dream of Machine Learning?
Toward In-Network Classification. In ACM HotNets.

[26] L. Ye, Q. Li, X. Zuo, J. Xiao, Y. Jiang, Z. Qi, and C. Zhu. 2021. PUFF: A Passive
and Universal Learning-based Framework for Intra-domain Failure Detection. In
IEEE IPCCC.

[27] S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei, J. Xu, Y. Zhang,
Y. Chen, H. Dong, X. Qu, and L. Song. 2018. PreFix: Switch Failure Prediction in
Datacenter Networks. In ACM SIGMETRICS.

[28] X. Zhang, C. Lan, and A. Perrig. 2012. Secure and Scalable Fault Localization
under Dynamic Traffic Patterns. In IEEE S&P.

[29] Y. Zhao, Y. Chen, and D. Bindel. Dec. 2009. Towards Unbiased End-to-End
Network Diagnosis. IEEE/ACM Transactions on Networking (ToN) 17, 6 (Dec.
2009), 1724–1737.

[30] Y. Zhou, C. Sun, H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu, Z. Shen, Y.
Xi, P. Zhang, D. Cai, M. Zhang, and M. Xu. 2020. Flow Event Telemetry on
Programmable Data Plane. In ACM SIGCOMM.

[31] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan,
M. Zhang, B. Y. Zhao, and H. Zheng. 2015. Packet-Level Telemetry in Large
Datacenter Networks. In ACM SIGCOMM.

[32] M. Zukerman, T. D. Neame, and R. G. Addie. 2003. Internet traffic modeling and
future technology implications. In IEEE INFOCOM.

348

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html

	Abstract
	1 Introduction
	2 Motivation
	2.1 Switch-based Flow Monitoring
	2.2 Flow Anomaly Detection
	2.3 Distributed Inference Aggregation

	3 System Overview
	4 Design Details
	4.1 Flow Monitoring Module
	4.2 Inference Generation Module
	4.3 Inference Aggregation Module

	5 Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Baselines and Metrics
	6.3 Flow Status Classifier
	6.4 Weight Assignment Scheme
	6.5 Single Failure Scenario
	6.6 Multiple Failures Scenarios
	6.7 Threshold-based Warning Raising Mechanism
	6.8 Warning Locality
	6.9 Length of Inference
	6.10 Resource Usage

	7 Related Work
	8 Conclusion
	References

