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Abstract—The increasing amount of network devices brings
significant improvement to network quality but is inevitably
prone to various failures. The frequent occurrence of link failures
and node failures in the real-world network, causing packet losses
and delay, calls for more accurate and fast detection methods.
Existing network failure detection systems focus on probes and
end-to-end metrics, but are limited by overhead on bandwidth or
storage. Reliance on specific deployment of monitoring systems
on devices like hosts also limits the feasibility and compatibility in
general network topology, ignoring the potential of transferring
monitoring tasks from hosts to switches. In this paper, we propose
PUFF, a passive and data-driven network failure detection
system based on in-network feature collection in programmable
switches and machine learning algorithms. First, PUFF explores
the potential use of continuous traffic changes to detect node
and link failures instead of end-to-end metrics. Second, PUFF
offers a software-based prototype and compares its performance
with the latest passive failure detection methods. Evaluation
based on simulation on real-world topology shows that PUFF
can detect nearly 90% node failures and 80% link failures with
less overhead in a shorter time.

I. INTRODUCTION

The Internet is facing the significant challenge of robustness

and reliability due to the ever-increasing scale where devices

are inevitably prone to failures which could significantly

weaken network QoS and incur revenue penalties. An operat-

ing network may suffer 302 failures per link in 30 days[1] and

the packet loss caused by network failures seriously degrades

the overall throughput and transmission delay[2]. However, the

time cost of fault localization for operators is relatively huge,

which calls for real-time and faster failure detection.

Troubleshooting intra-domain network failures is non-trivial

and requires both low overhead, full failure coverage and

high accuracy. Unfortunately, off-the-shelf solutions are far

from satisfactory, which can be specified into proactive and

passive failure detection according to whether the probe packet

is needed. Proactive failure detection[3], [4], [5], [6], [7]

can detect failures by periodically sending probe packets but

strongly relies on moderate number of probe packets. In

detail, considerable probes may exert the bandwidth and few

probes cannot reflect network quality timely. Passive failure
detection[8], [9], [10] handles failure detection by collecting

end-to-end metrics under failures to infer the hidden failures.
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However, end-to-end feature collections call for specific moni-

toring systems and some of them strongly relies on structure of

topology[9], leading to limited failure coverage. In addition,

end-to-end feature collections also heavily rely on the total

sampling period, which limits the speed of detection.
To address the above requirements of overhead, failure

coverage and speed, we propose PUFF, a Passive and Univer-

sal learning-based Framework for quick intra-domain failure

detection. PUFF is based on two key designs that make

innovation on data collection and classification methods. First,

to achieve high failure coverage with low overhead, PUFF

shifts the monitoring functions from hosts to switches with

the help of programmable switches, which speeds up fetching

data by requesting switches instead of many hosts. Second,

just like other applications of machine learning in network[11],

[12], PUFF adopts machine learning algorithm and performs

elaborate feature design instead of directly using metrics and

successfully reduces the overhead of recording all packet

history in switches to compute retransmissions or end-to-end

delay. Motivated by NetPoirot[8], which uses the decision tree

to troubleshoot failures, PUFF explores the potential of using

in-network feature changes before and after failure happens

and finds the latent relationship between nodes to infer the

network failures by machine learning. In addition, the de-

ployment of monitors (switches with monitoring function) and

feature design also empower PUFF to perform well with few

monitors and many nodes. Thereby, PUFF performs analysis

of effects of machine learning and different parameters in

failure detection.
Our contributions are as follows.

• PUFF is a passive network failure detection system with

machine learning and feature collection on programmable

switches instead of end-to-end metrics (§V).

• We build a prototype of PUFF and deploy it on BMv2

(§VI). Our code has been released on github[13]. The

evaluation shows that our prototype has low memory and

bandwidth for in-network data collection (§VII).

• We evaluate PUFF in node and link failure in

three topologies[14], [15] with two testbeds built on

Mininet[16] and find that PUFF outperforms ML-

LFIL[10] in link failure detection and troubleshoots more

than 90% node failures with 0.2 seconds of data and one-

tenth of the switches to install monitoring function.
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Table I
COMPARING PUFF WITH EXISTING METHODS OF NETWORK FAILURE

DETECTION

Type Failure
Coverage

Sampling
Period Bottleneck

BFD proactive general ms bandwidth
Pingmesh proactive data center 10s storage

007 passive data center s deployment
ML-LFIL passive general s collection

PUFF passive general ms -

II. RELATED WORK

Proactive Failure Detection. Based on injected probes, device

malfunctions can be traced or detected by the probe packet.

Classical solutions such as OSPF [3] and BFD [4] establish

periodic dialogues and treat peer as failure if not received

packet at the agreed time. There also exists failure detection by

analyzing probe packets. Pingmesh[5] keeps periodic packet

to detect failures by measuring latency, but cannot locate the

specific device and relies on non-trivial deployment overhead.

Everflow[6] mirrors the traffic to traceroute failures, while

exerting enormous pressure on bandwidth. NetBouncer[7]

keeps round-trip packets between the server and the top-layer

switch to solve the packet loss rate of the link and detect link

failures. In conclusion, proactive failure detection all faces the

problem of keeping balance between the time granularity and

the overhead of probes injection.

Passive Failure Detection. Passive failure detection collects

TCP statistics to locate the failure by abnormal metrics without

probes. NetPoirot[8] trains decision-tree algorithms to infer

failures based on TCP statistics such as DupACKs. [17]

collects metrics from various layers and network-I/O system

call delays at end hosts every 10 seconds and applies statistical

tests to identify failures. 007[9] votes for the most likely failed

device by end-to-end TCP retransimissions in 30s in datacenter

network. ML-LFIL[10] adopts machine learning methods to

locate link failures based on volume, delay and drop rates

between nodes. However, collecting all end-to-end metrics

like volume and drop rates strongly relies on the existence

of flows between every nodes, which cannot react to the

nonstationary network status and the cost of collection heavily

limits the speed of passive failure detection. In summary, the

current network failure detection systems either introduce large

overhead or is limited in general topology, which inevitably

compromises their practicality. Table I presents a brief com-

parison between PUFF and the above representative methods

in type, failure coverage, sampling period and bottleneck.

III. MOTIVATION

Comprehensive and in-network packet history helps locate
the malfunctions. Figure 1 shows how comprehensive packet

history helps locate the malfunctions. To simplify illustration,

the number i in the circle denotes node i and all hosts only

connected to node i. Let < i, j > be the flow from i to j,

Ni be the node i and Lm,n be the link between m and n.

21

3

4 5
<5,2><5,4>

Figure 1. Using packet history to locate failures

If L3,4 fails, the combination of < 5, 4 > and < 5, 2 > can

correctly locate L3,4 because the correctly forwarding of <
5, 2 > excludes the possibility of L3,5 failures while in 007[9],

L3,4 and L3,5 have the same retransmission vote, making it

different to tell the correct failure. If N2 fails, N1 continuously

receives the retransmitted packet of < 5, 2 > from N3 but

does not receive the response from N2. The failure of N2 can

also be easily deduced from N3 or N2 if there exists flow

of < 5, 1 > or < 3, 1 >. Therefore, unlike end-to-end failure

detections, moving collection from ends to switches helps find

the correlation between shared failures and locate them easily.

Continuous changes in traffic of TCP reflect network
failure without resource-consuming end-to-end metrics.

Figure 2 shows an example of how traffic changes when one

node is down. Let Ti be different moments of one TCP stream,

wi be a series of time windows. At time F , some nodes of the

T0 T1 T2 T3 T4 F

RTTRTT RTO 2×RTO

w2 w3w1

T5

RTTRTT

T6

w0

Figure 2. Example of a given TCP stream when one node is down

forwarding path fail. Here we set 4 continuous time windows

to illustrate this change. Assuming T0 represents the very

beginning of a TCP stream, From T0 to T4, due to TCP’s slow

start, the volume of packets recorded at the monitors grows

exponentially in w0 and w1. At T5, the sender does not receive

an ACK within the Retransmission Time Out (RTO) because

some nodes fail at F . Then, the sender retransmits packet

and doubles its RTO and the volume of packets decreases

sharply in w2 and w3. From Figure 2, a reasonable setting of

w is critical to whether the change in throughput of one TCP

stream can be observed. Compared with counting volume, the

required time and memory of collecting end-to-end metrics

is huge for its reliance on recording Seq (Sequence ID of

the packet, 4Bytes) in a sampling period, which requires
5MB×4
MTU ≈ 14KB/s of a flow of 5MB/s. Therefore, changes

in traffic imply the changes in end-to-end metrics and may

help reduce overhead without sacrifice in effect of detection.
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IV. DESIGN OF PUFF

A. Key ideas of PUFF

Passive detection of network failures requires representative
and real-time features, high failure coverage and low col-
lection overhead of bandwidth and storage. To meet those

requirements, we propose two key ideas of PUFF.

In-network metrics collection. Most of existing passive

failure detection focuses on end-to-end metrics such as RTTs,

lacking information on the forwarding path and can only tell

whether failure exists and cannot accurately locate failures.

Compared with the overhead of installment of monitoring pro-

gram on hosts, programmable switches performs lightweight

in-network metrics collection by storing the value in registers.

However, each Match-Action Units (MAU) of a Tofino switch

contains up to two 256KB registers[18], making it hard to keep

the complete information to get traditional passive indicators

like retransmission.

Flow statistics-based machine learning for Detection. The

controller perceives the network status by collecting traffic

changes on all monitors. However, the dynamics of network

status, such as the arrival or the departure of flow, limits the

effectiveness of using volume of counting. PUFF solves this

problem by adopting machine learning methods to learn about

failures under various network conditions by collecting a large

amount of labeled traffic data in continuous time windows.

B. Architecture of PUFF
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Figure 3. Overview of PUFF

Workflow of PUFF. Overall, the workflow of PUFF consists

of four steps in Figure 3. (1) PUFF setter deploys the P4

code of the monitoring function to PUFF monitors. (2) PUFF
monitor executes the compiled P4 code and periodically

reports the traffic data to PUFF collector. (3) PUFF collector
transforms the unstructured original data into tabular data

fed to PUFF detector. (4) PUFF detector performs various

machine learning algorithms to detect network failures.

Settings of PUFF. PUFF settings involve two aspects of

functions. Firstly, the PUFF setter needs to set the size of

time window and the amount of total time windows according

Table II
PREPROCESS FOR EACH TIME WINDOW T

Feature Definition

tsit the volume of TCP packets whose source is hi

tdit the volume of TCP packets whose destination is hi

tct the volume of recorded TCP packets
fwt =1 when t is the first time window

bsit (tsit)/(tsit−1) if fwt!=1

bdit (tdit)/(td
i
t−1) if fwt!=1

lwt =1 when t is the last time window

asit (tsit)/(tsit+1) if lwt!=1

adit (tdit)/(tdit+1) if lwt!=1

to the topology and the classification effects of labeled data.

Secondly, PUFF setter needs to distribute the compiled P4

code to the specific monitors. It seems feasible to send

the compiled P4 code to all programmable switches while

in reality, programmable switches are limited and the full

deployment of compiled P4 codes demands higher cost in

network composed of programmable switches only. Therefore,

dynamic deployment makes the PUFF mechanism compatible

and scalable with existing and increasing network devices.

V. FEATURE DESIGN AND DETECTION ALGORITHM IN

PUFF

A. Feature Design

Step 1: Collecting Features. In this step, the monitor needs

to collect node features based on collected flow statistics. Mo-

tivated by continuous change of volume, we deduce network

situation from the changes in traffic between node and node.

Feature Model. To ensure high accuracy of the failure de-

tection, for each monitored node, we extract traffic features

at each time window based on original traffic, as shown in

figure II. Let hi be the hosts connected to switch i, therefore,

in each time window, the monitor computes the corresponding

value of features for each node. Therefore, node features in

different time windows on one monitor can be represented as

vector Ni
K as defined below:

Ni
K = [Ni,0

K , ..., Ni,T
K ] (1)

where K is the monitor ID, i is the monitored node and T is

the total window count while Ni,T
K are the vector composed

of features in Table II. We also set other dummy variables for

bsit, bd
i
t, as

i
t and dsit to avoid division by zero errors when

tsit−1, tdit−1, tsit+1 or tdit+1 equals zero.

Illustrative Example. We illustrate the changes of our features

on one monitor in Figure 2 in the following analysis. We

assume that the monitor forwards TCP stream with hi as the

destination or source address, which means that hi can either

be source or destination in Figure 2. Here we also assume

node i fails in w2. In w1, we can see the increase in bsit and

adit and the decrease in asit and adit. When the fault occurs at

w2, the flow with hi as the destination or source experiences

timeout retransmission, and the number of packets of these

two flows decreases. Therefore, node i’s feature changes as
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follows: tsit, td
i
t , tcit, bd

i
t and bsit decrease while adit and asit

increase in w2. In w3, since node i has failed in w2, there will

not be packets with i as the source and the volume of packets

whose destination is i decreases sharply. Therefore, tsit and

bsit become 0, while tdit , tcit and bdit decrease to 0.

Step 2: Generating Node Feature and Link Feature. Step

2 is to generate node features and link features based on the

result of Step 1. In this way, we provide a universal modeling

method for both links and nodes to detect failures.

Node Feature. The features collected by each monitor are re-

arranged in descending order of the distance from the monitor

to the monitored node. The principle of this rearrangement is

that the closer monitor reduces interference of irrelevant traffic,

making its collection of monitored traffic more representative.

Therefore, these node features collected on different monitors

are fed to machine learning algorithms as vector Ni:

Ni = [Ni
1, ..., Ni

K2 ] (2)

where K2 is the index of the sorted K monitors while Ni
K2

represents the result of Step 1.

Link Feature. We get the link features by concatenating the

node features of two ends of this link. This is inspired by the

probably different behaviors of nodes when link failure occurs.

Thus, the link features are fed to classifier as Li:

Li = [Ni1, Ni2] (3)

where i1 and i2 means the two ends of this link while Ni1

and Ni2 are the two node features.

B. Detection Algorithm
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Figure 4. Failure detection model of nodes and links

Figure 4 shows the framework of link detection and node

detection. For full failure coverage, PUFF provides link clas-
sifier and node classifier for both two tasks.

Link Classifier. The traffic features collected from the moni-

tors are fed to the machine learning-based link classifier firstly.

Node Classifier. Except for directly using node features for

node classifier by machine learning, PUFF also provides an-

other threshold-based node classifier by aggregating the result

of link classifier. In this way, we first compute the average

value of links that are connected to this node. If this value

is greater than the given threshold η, the node is regarded to

be a failed node. This method is motivated by two properties:

a). When one end of the link fails, its behavior is completely

different from the other end. b). all links connected to the

broken node are equivalent to failure.

VI. IMPLEMENTATION

window 1 window N
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PUFF Runtime

Parameter Adjustment

Programmable switch

Controller

Switch configuration
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Controller

Periodic Reporting

Figure 5. PUFF Implementation

PUFF Control plane. PUFF uses Ryu[19] controller to realize

functions including collector and detector. Among them, the

machine learning-based detector is realized by scikit-learn[20].

In collector, we implement a SQL-based database to store the

processed data. Thereby, the control plane provides interfaces

for parameter adjustment in monitoring based on the compar-

ison between various algorithms.

PUFF Runtime. Once the parameters of monitoring are set

or updated, PUFF runtime generates the complied P4 codes

and distributes them to specific programmable switches.

PUFF Data plane. We implement PUFF using P4[21] (400

lines of code). The overall time synchronization between

switches is reached by DPTP[22]. Once packet arrives, PUFF

hashes its five tuples to update the corresponding register by

computation of ingress global timestamp.

VII. EVALUATION

Setup. We perform experiments on a server equipped with 2

Intel CPUs (Xeon E5-2643, v4, 3.40 GHz, 6 physical cores)

while running Ubuntu 18.04.1. We establish two testbeds on

Mininet [16] to test the performance of PUFF. In Testbed A,

the continuous traffic between each host is generated with the

rates randomly chosen in [0,30Mbps]. In Testbed B, the size

of the discontinuous traffic between random hosts obeys the

Pareto distribution with 1MB as the 80% quantile and 20MB

as the maximum and the packets in the stream conform to

the Poisson Pareto Burst Process model[23]. We randomly

disconnect one link and let one node down to simulate link and

node failures. The setting of Testbed A is roughly the same

as [10] to compare the link classification effects. The data of

evaluation is simulated under these settings and divided into

training set and test set according to the ratio of 4:1.

Objectives. We evaluate PUFF with five objectives.
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Table III
TOPOLOGY SETTINGS

Topology Node Link RTT Median

GEANT 40 61 21ms
Tinet 53 88 72ms

AS1221 104 306 28ms

Table IV
COVER FLOW INDEX

Monitor Counts

Topology 1 2 3 4 5 6 7 8
GEANT 67.1 85.6 87.6 89.4 89.4 90.4 90.4 90.4

Tinet 64.5 74.6 76.3 76.7 80.4 81.7 82.2 88.0
AS1221 15.8 21.6 26.9 31.6 33.2 36.2 38.5 40.6

• We evaluate the effectiveness of PUFF with few monitors.

• We verify the effectiveness of two-stage feature design

and four well-known machine learning algorithms in link

failure detection.

• We analyze the effects of different parameters in link

failure detection and compare PUFF with the latest end-

to-end passive link failure detection in terms of accuracy.

• We evaluate PUFF in accuracy and time in node failure

detection in various topologies.

• We evaluate the resource usage of software-based proto-

type under different traffic settings.

Topology Settings. The basic settings about the topologies

are depicted in Table III. The evaluation is completed on

three heterogeneous topologies including GEANT, AS1221

and Tinet[14], [15]. We also report the median value of all

end-to-end RTTs, which is the unit of the time window for

one topology because in RFC6298[24], RTO is closely related

with RTT after the first RTT is measured.

Parameter Settings. The specific parameter settings involve

K (the number of monitors), w (the size of time window) and

T (the amount of time window). The detail of the evaluation

can be found in github[13].

Evaluation Metrics. We use the following metrics[25] to

evaluate failure detection: (a) Precision: The ratio of the

correct classified failures over the total samples classified as

failures. (b) Recall: The ratio of the correctly classified failures

over the total real failures. (c) Accuracy: The ratio of the

correctly classified samples over the total samples. (d) F1-

score: The harmonic average of precision and recall values.

(e) Fault Localization time: The time to detect failures.

A. Evaluation of monitor deployment

Table IV shows the evaluation of monitor deployment by

using the ratio of the amount of flow observed on monitors(%)

to the amount of the total flow named COVER FLOW INDEX

as an indicator in GEANT, Tinet and AS1221 in Testbed B

when K ranges from 1 to 8. When K is 8, the COVER FLOW

INDEX has reached 90.4%, 88.0% and 40.6% respectively.

This result reveals that few monitors are sufficient to obtain

Table V
EXAMPLE OF FEATURE IN GEANT WHEN W=42MS

Node Type Broken Node Normal Node

Position -1 0 +1 -1 0 +1

tsit 16.4 12.9 9.6 57.3 57.1 59.5

tdit 16.6 16.3 11.7 64.2 62.8 65.5

bsit 0.52 0.56 0.51 2.20 1.93 2.72

bdit 0.3 2.3 1.0 2.48 2.54 2.52

asit 1.7 1.9 1.4 3.0 2.4 1.5

adit 0.64 3.1 1.2 3.4 2.4 1.8

Table VI
EXAMPLE OF FEATURE IN GEANT WHEN W=105MS

Node Type Broken Node Normal Node

Position -1 0 +1 -1 0 +1

tsit 34.6 25.7 23.9 128.8 149.2 154.3

tdit 39.5 33.0 30.0 140.5 156.3 162.5

bsit 1.8 1.7 2.8 6.3 5.2 3.9

bdit 0.7 4.8 6.2 7.7 5.2 3.8

asit 7.8 4.9 6.3 3.4 2.7 2.8

adit 6.6 7.9 2.6 2.4 2.8 4.7

the global view of full traffic and our method of monitor

deployment performs well on different topologies while for

topologies like AS1221, where most nodes are respectively

clustered in some single clusters and connected by finite

switches, adding monitors provides less of a benefit. However,

the necessary amount of monitors is also small (8), compared

to 104 nodes in AS1221 to capture 40% of the flow.

B. Evaluation of two-stage feature design

1) Evaluation of feature design: Tables V, VI and VII

respectively show the average value of the node features of the

broken node and the normal node collected at the nearest mon-

itor when w is 2×RTTmedian(42ms), 5×RTTmedian(105ms)

and 10×RTTmedian(210ms). These results are performed in

GEANT at Testbed B when the node fails. The position of 0,

-1 or +1 indicates that it is the failure window, the last window

before or the first window after the failure occurrence window.

In Table V and Table VI, both the tsit and tdit of the broken

node decrease sharply, which conforms to derivation in the

illustrative example. However, in Table VII, the tsit and tdit of

the broken node do not decrease sharply because the larger w

also means more possibility of undisturbed packet forwarding.

Table VII
EXAMPLE OF FEATURE IN GEANT WHEN W=210MS

Node Type Broken Node Normal Node

Position -1 0 +1 -1 0 +1

tsit 68.1 120.4 37.1 194.3 315.9 394.9

tdit 69.6 117.4 41.6 209.2 342.5 436.9

bsit 34.9 10.8 2.4 57.5 35.8 12.3

bdit 32.0 13.4 3.2 60.9 36.9 12.5

asit 4.8 53.3 22.8 2.1 5.5 2.6

adit 2.6 10.3 8.1 1.4 2.5 2.7
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Table VIII
COMPARISON OF MACHINE LEARNING ALGORITHMS

Machine Learning
Method Failures F1-score Time Per

link (in μs)

Logistic Regression Link 0.75 2.5
SVM Link 0.80 808

GBDT Link 0.81 4.4
Random Forest Link 0.79 12.3

Logistic Regression Node 0.71 1.3
SVM Node 0.63 305

GBDT Node 0.76 7.8
Random Forest Node 0.73 8.9

(a) GEANT (b) Tinet

Figure 6. Effects of the amount of monitors

In addition, when w becomes larger, bsit, bdit, asit, and adit
all perform in accordance with the illustrative example. In

contrast, this mutation in bsit, bd
i
t, as

i
t, and adit is not obvious

in Table V and VI. The changes of the node features of the

normal nodes illustrate the randomness due to the arrival or

end of the flow and perform completely different from the

broken node, verifying the feasibility of feature design.

2) Evaluation of classifier in detection algorithm: Table

VIII shows the F1-score and time per link of PUFF using

Logistic Regression[26], SVM[27], GBDT[28] and Random

Forest[29] in Testbed A on GEANT[14] when link fails. Here

we set K as 4, w as 21ms and T as 8 on nearly 100000

samples. We adopt GBDT as link classifier in PUFF for its

feasibility without GPU and performance to handle nonlinear

features when link or node fails while SVM needs a longer

time to find nonlinear kernels. GBDT also performs better in

link failures than node failures, enlightening using threshold-

based classifier in node failure detection.

C. Evaluation of link failure detection

1) Analysis of parameters: Figure 6, 7 and 8 show the effect

of parameters on the link failure detection of 100000 samples.

Figure 6 shows the effects of K on accuracy, recall and F1-

score of link failure detection when w is 2 × RTTmedian

in GEANT and Tinet. PUFF exceeds 75% only using one-

tenth of the total switches as monitors. K improves link failure

detection while this benefit is not obvious in GEANT and

becomes smaller when K is larger than one-tenth.

Figure 7 shows the effect of w on link failure detection when

K is 4 or 8, T is 4, 6 or 8 and w ranges from 1
8 ×RTTmedian

to 4.5 × RTTmedian. The F1-score is significantly improved

as w increases when w is larger than 1 × RTTmedian. If w

(a) GEANT 4 monitors (b) GEANT 8 monitors

(c) Tinet 4 monitors (d) Tinet 8 monitors

Figure 7. Effects of the size of time window

(a) GEANT (b) Tinet

Figure 8. Effects of the amount of time windows

is too small, the flow may not experience retransmission and

changes in traffic is too minimal for classifier to detect failures.

Figure 8 shows the effect of T on the F1-score of link failure

detection when K is 8 and w is 1×RTTmedian when T ranges

from 1 to 18. When T is 1, we only collect the failure window.

The F1-score increases with T and becomes slower after T is

bigger than 8. In conclusion, enlarging w and T is not always

a good choice for the extra cost of capturing. PUFF is more

sensitive to w and T and the effect of K varies from topologies.

2) Comparison with end-to-end passive detection: Figure

9 shows the comparison between PUFF and ML-LFIL with

Random Forest (the best version) in link failure detection in

two testbeds within the same sampling period ranging from

200ms to 1000ms with 100000 datapoints. Here we set K and

T as 8, thus w is equal to the sampling period divided by

T. In Figure 9, PUFF outperforms ML-LFIL in all sampling

periods in both GEANT and Tinet. In Tinet, the F1-score has

reached 0.91 when the total sampling period is 800ms. The

extra experiment shows that the proposed result of ML-LFIL

cannot be reached until the total sampling period is larger

than 5s. Therefore, without long-time monitoring of end-to-

end traffic, PUFF provides quicker failure detection.

D. Evaluation of node failure detection
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(a) GEANT

(b) Tinet

Figure 9. Comparison vs ML-LFIL

Table IX
PROPORTION OF LINKS CONNECTED TO NORMAL NODE BEING LABELED

AS BROKEN LINK

Node Type Normal Node

Topology w(ms) [0,0.25] (0.25,0.5] (0.5,0.75] [0.75,1]
GEANT 21 0.8 0.1 0.02 0.08
GEANT 42 0.77 0.1 0.03 0.1

Tinet 72 0.75 0.13 0.05 0.07
Tinet 144 0.82 0.10 0.02 0.05

AS1221 28 0.70 0.10 0.03 0.17
AS1221 56 0.73 0.10 0.03 0.14

Table X
PROPORTION OF LINKS CONNECTED TO BROKEN NODE BEING LABELD AS

BROKEN LINK

Node Type Broken Node

Topology w(ms) [0,0.25] (0.25,0.5] (0.5,0.75] (0.75,1]
GEANT 21 0.23 0.04 0.01 0.72
GEANT 42 0.19 0.03 0.01 0.77

Tinet 72 0.22 0.04 0.03 0.71
Tinet 144 0.15 0.02 0.03 0.80

AS1221 28 0.07 0.01 0.01 0.91
AS1221 56 0.10 0.05 0.01 0.84

(a) w = 1×RTTmedian,T=8 (b) w = 2×RTTmedian,T=8

Figure 10. Results of Node Failure Detection

Table XI
COMPARISON OF FAULT LOCALIZATION TIME

Methods Task Time (in μs)

Ping-based approach link failures 1638000
ML-LFIL link failures 202

PUFF link failures 224
Ping-based approach node failures 114500

PUFF node failures 249

1) Analysis of threshold: Table IX and Table X show the

proportion of the links connected by the broken or normal

node as broken link by the link classifier (the output of the

threshold-based node classifier) where K is 8, T is 8 and

w is 1 × RTTmedian or 2 × RTTmedian in Testbed B in

GEANT. [a, b) represents that the value is ≥ a, and < b.

More than 75% of normal nodes’ value is in [0, 0.25] in Table

X and more than 70% of the broken nodes is in (0.75,0.1]

in Table IX. The ratio of (0.25, 0.75] is relatively small in

both tables and this value of broken node is lower than the

one of normal node. Further research shows that most of the

misclassification happens when there is no flow whose source

or destination fails in the total sampling period and a smaller

or larger threshold causes higher false negative rate or higher

false positive rate. In conclusion, the threshold-based node

classifier successfully reduces the impact of randomness and

the recommended setting of threshold is 0.7.

2) Comparison in accuracy and failure localization time:
Figure 10 shows the results of direct and threshold-based node

classifiers of PUFF in testbed A in GEANT, AS1221 and Tinet

in node failure detection when w is 1 or 2×RTTmedian, K

is 8 and T is 8. The result with (l->n) or (n) respectively

represents the result of threshold-based or direct node classifier

and shows that the former performs better. The accuracy and

recall (l->n) exceeds 80% in Figure 10 (b) in AS1221 with 8

monitors. We can also see decrease in recall(l->n) in AS1221

and accuracy(n) in Tinet, showing that increasing w may

also introduce noises in classifiers. Table XI depicts the fault

localization time in GEANT of every mentioned method. In

ping-based approach, we randomly let half or one of the hosts

ping the remaining hosts to detect failures. Table XI shows that

PUFF is slower than ML-LFIL while ML-LFIL needs time to

collect data from hosts and the time cost of PUFF does not

scale up with the size of network.

E. Resource Usage

Figure 11 shows the resource usage of the monitoring

function of PUFF when the transmission rate of per flow

ranges from 1 to 10MB/s and the count of flows ranges from 1

to 10 in Testbed A. The black line and the yellow bar show that

the memory usage of the monitoring function remains roughly

stable at 7MB and the bandwidth usage remains at 73KB/s

respectively even when the transmission rate exceeds 5MB/s

and the total sampling period is 1s. In addition, the average

size of reporting file is 52KB, 66KB and 70KB when the total

sampling period is 200ms, 400ms and 1000ms while the one
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Figure 11. Resource usage of PUFF

captured by tcpdump from one host in ML-LFIL is 1.6MB,

3.1MB and 7.6MB. Obviously, the feature design based on

counting empowers monitors to meet with high throughput and

successfully reduce overhead of in-network feature collection.

VIII. CONCLUSION

We present PUFF, a passive and universal learning-based

framework for intra-domain failure detection. PUFF success-

fully explores the potential of shifting network monitoring

from ends to switches, reducing the overhead of collection

by refined feature design based on TCP and attaining high

performance by machine learning algorithms. The experi-

ments of PUFF in various parameters and tasks show that

PUFF achieves high failure coverage, fast detection speed

and low overhead. Port-level feature, more effective monitor

deployment, performance under congestion and deep learning

algorithms need to be further studied.
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