Contents

[IPCCC-2021]PUFF: A passive and universal learning-based framework for intra-domain failure detection

Lianjin Ye § *, Qing Li ‡ *, Xudong Zuo §, Jingyu Xiao, Yong Jiang § *, Zhuyun Qi*, Chunsheng Zhu* § Tsinghua Shenzhen International Graduate School, Shenzhen, China ‡ Southern University of Science and Technology, Shenzhen, China *Pengcheng Laboratory, Shenzhen, China

- The rapid development of network applications puts forward higher requirements for network reliability.
- Network failures are inevitable and occur more frequently.
- Network fault detection methods based on probe packets are facing bottlenecks.

- Active detection based on probe packet connection
 - \bullet OSPF
 - ♦ BFD
- Active detection based on packet statistics
 PingMesh
 NetBouncer
- Passive detection based on indicators
 Netpoirot
- Log-based passive detection
 Prefix

Table I COMPARING PUFF WITH EXISTING METHODS OF NETWORK FAILURE DETECTION

	Туре	Failure Coverage	Sampling Period	Bottleneck
BFD Pingmesh 007 ML-LFIL	proactive proactive passive passive	general data center data center general	ms 10s s	bandwidth storage deployment collection
PUFF	passive	general	ms	-

Active detection Bottleneck: The bandwidth and storage of the detection packet require more overhead, and the scene is single. Passive detection Bottleneck: equipment support is required, end-side deployment requires additional support

• Passive detection based on programmable switch and Machine Learning

- Design idea: Based on the programmable switch, the data collection task is transferred from the end side to the switch side.
- Low Overhead: Customized hardware and software design reduces passive detection overhead.
- Network IntelliSense: A machine learning method based on in-network data to perceive network status.

- PUFF motivation
- PUFF design
- PUFF Implementation
- Evaluation

- Comprehensive and in-network packet history helps locate the malfunctions.
- Continuous changes in traffic of TCP reflect network failure without resource-consuming endto-end metrics

Figure 2. Example of a given TCP stream when one node is down

Figure 1. Using packet history to locate failures

- PUFF motivation
- PUFF design
- PUFF Implementation
- Evaluation

- Control plane
 - PUFF Setter
 - PUFF Collector
 - PUFF Detector
- Data plane
 - PUFF Monitor

- PUFF Controller
 - DPTP Ryu controller
- PUFF Runtime
 - P4 code and parameter distribution.
- PUFF Data plane.
 - P4 implementation
 - DPTP for time synchronization

- PUFF motivation
- PUFF design
- PUFF Implementation
- Evaluation

PUFF: A passive and universal learning-based framework for intra-domain failure detection PUFF Control plane

- Monitor Selection Module
 - Generate monitoring switch deployment nodes by reading topology management.
- Monitor configuration module
 - The best hyperparameters (time window size, number of time windows) in the topology are generated through integrated learning of tagged fault detection modules.
- Monitor management:
 - Deploy monitoring switch settings

- Control program
 - Set the number of observation data packets and characteristic registers by reading the issued configuration file. When receiving the control plane access, read the register data and return.
- Feature register
 - Store the corresponding characteristics.
- Matching action
 - Store eligible data packets

PUFF: A passive and universal learning-based framework for intra-domain failure detection Detection Algorithm

- Feature Extractor
 - ♦ Link Feature
 - ♦ Node Feature
- Link Classifier
 - ◆ Learning-Based Model.
- Node Classifier
 - ◆ Threshold method.

Figure 4. Failure detection model of nodes and links

- PUFF motivation
- PUFF design
- PUFF Implementation
- Evaluation

• Evaluation of monitor deployment

Table III TOPOLOGY SETTINGS

Topology	Node	Link	RTT Median
GEANT	40	61	21ms
Tinet	53	88	72ms
AS1221	104	306	28ms

Table IV COVER FLOW INDEX

				Monitor	Counts			
Topology	1	2	3	4	5	6	7	8
GEANT	67.1	85.6	87.6	89.4	89.4	90.4	90.4	90.4
Tinet	64.5	74.6	76.3	76.7	80.4	81.7	82.2	88.0
AS1221	15.8	21.6	26.9	31.6	33.2	36.2	38.5	40.6

- Evaluation of two-stage feature design
 - Evaluation of feature design

Table VI EXAMPLE OF FEATURE IN GEANT WHEN W=105MS

Table VII EXAMPLE OF FEATURE IN GEANT WHEN W=210MS

Node Type	Br	oken No	de	No	ormal No	de	Node Type	B	roken No	de	No	ormal No	de
Position	-1	0	+1	-1	0	+1	Position	-1	0	+1	-1	0	+1
ts_t^i	34.6	25.7	23.9	128.8	149.2	154.3	ts_t^i	68.1	120.4	37.1	194.3	315.9	394.9
td_t^i	39.5	33.0	30.0	140.5	156.3	162.5	td_t^i	69.6	117.4	41.6	209.2	342.5	436.9
bs_t^i	1.8	1.7	2.8	6.3	5.2	3.9	bs_t^i	34.9	10.8	2.4	57.5	35.8	12.3
bd_t^i	0.7	4.8	6.2	7.7	5.2	3.8	bd_t^i	32.0	13.4	3.2	60.9	36.9	12.5
as_{t}^{i}	7.8	4.9	6.3	3.4	2.7	2.8	as_t^i	4.8	53.3	22.8	2.1	5.5	2.6
ad_t^i	6.6	7.9	2.6	2.4	2.8	4.7	ad_t^i	2.6	10.3	8.1	1.4	2.5	2.7

- Evaluation of two-stage feature design
 - Evaluation of classifier in detection algorithm

Table VIII COMPARISON OF MACHINE LEARNING ALGORITHMS

Machine Learning Method	Failures	F1-score	Time Per link (in μs)
Logistic Regression	Link	0.75	2.5
SVM	Link	0.80	808
GBDT	Link	0.81	4.4
Random Forest	Link	0.79	12.3
Logistic Regression	Node	0.71	1.3
SVM	Node	0.63	305
GBDT	Node	0.76	7.8
Random Forest	Node	0.73	8.9

• Evaluation of link failure detection

• Analysis of parameters

• Evaluation of link failure detection

Comparison with end-to-end passive detection

- Evaluation of node failure detection
 - Analysis of threshold

Table IX		
PROPORTION OF LINKS CONNECTED TO NORMAL NODE	BEING	LABELED
AS BROKEN LINK		

Table X PROPORTION OF LINKS CONNECTED TO BROKEN NODE BEING LABELD AS BROKEN LINK

Topology w(ms) [0,0.25] (0.25,0.5] (0.5,0.75] [0.75,1] GEANT 21 0.8 0.1 0.02 0.08 GEANT 42 0.77 0.1 0.03 0.1 Tinet 72 0.75 0.13 0.05 0.07 Tinet 144 0.82 0.10 0.02 0.05 AS1221 28 0.70 0.10 0.03 0.17	Node Type	Normal Node				
A31221 JU U.13 U.10 U.U3 U.14	Topology	w(ms)	[0,0.25]	(0.25,0.5]	(0.5,0.75]	[0.75,1]
	GEANT	21	0.8	0.1	0.02	0.08
	GEANT	42	0.77	0.13	0.03	0.1
	Tinet	72	0.75	0.10	0.05	0.07
	Tinet	144	0.82	0.10	0.02	0.05
	AS1221	28	0.70	0.10	0.03	0.17
	AS1221	56	0.73	0.10	0.03	0.14

Node Type			Broken Nor	de	
Topology	w(ms)	[0,0.25]	(0.25,0.5]	(0.5,0.75]	(0.75,1]
GEANT	21	0.23	0.04	0.01	0.72
GEANT	42	0.19	0.03	0.01	0.77
Tinet	72	0.22	0.04	0.03	0.71
Tinet	144	0.15	0.02	0.03	0.80
AS1221	28	0.07	0.01	0.01	0.91
AS1221	56	0.10	0.05	0.01	0.84

• Evaluation of node failure detection

Comparison in accuracy and failure localization time

Figure 10. Results of Node Failure Detection

Table XI COMPARISON OF FAULT LOCALIZATION TIME

Methods	Task	Time (in μ s)
Ping-based approach	link failures	1638000
ML-LFIL	link failures	202
PUFF	link failures	224
Ping-based approach	node failures	114500
PUFF	node failures	249

• Resource Usage

Figure 11. Resource usage of PUFF

THANKS